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Preface

This preface introduces the ARM7TDMI-S and its reference documentation. It contains 
the following sections:

• About this document on page iv

• Further reading on page vii

• Feedback on page viii.
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About this document

This document is a reference manual for the ARM7TDMI-S.

Intended audience

This document has been written for experienced hardware and software engineers who 
may or may not have experience of ARM products.

Organization

This document is organized into the following chapters:

Chapter 1 Introduction

Read this chapter for an introduction to the ARM7TDMI-S.

Chapter 2 Programmer’s Model

Read this chapter for a description of the programmer’s model.

Chapter 3 Memory Interface

Read this chapter for a description of the memory interface.

Chapter 4 Coprocessor Interface

Read this chapter for a description of the coprocessor interface.

Chapter 5 Debug Interface

Read this chapter for a description of the debug interface.

Chapter 6 Instruction Cycle Timings

Read this chapter for instruction cycle timings.

Chapter 7 AC Parameters

Read this chapter for the AC parameters.

Appendix A Signal Descriptions

Read this chapter for a description of the ARM7TDMI-S signals.

Appendix B Differences Between the ARM7TDMI-S and the ARM7TDMI

Read this chapter for a description of the differences between the 
ARM7TDMI-S and the ARM7TDMI hard macrocell.
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Appendix C Implications of Removing the Debugger or 64-bit Multiply Support

Read this chapter for details of the implications of removing the debugger 
or multiplier.

Appendix D Debug in Depth

Read this chapter for a detailed description of the debug interface.

Typographical conventions

The following typographical conventions are used in this document:

bold Highlights ARM processor signal names within text, and interface 
elements such as menu names. May also be used for emphasis in 
descriptive lists where appropriate.

italic Highlights special terminology, cross-references and citations.

typewriter Denotes text that may be entered at the keyboard, such as 
commands, file names and program names, and source code.

type writer Denotes a permitted abbreviation for a command or option. The 
underlined text may be entered instead of the full command or 
option name.

typewriter italic
Denotes arguments to commands or functions where the argument 
is to be replaced by a specific value.

typewriter bold
Denotes language keywords when used outside example code.
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Timing diagram conventions

This manual contains a number of timing diagrams. The following key explains the 
components used in these diagrams. Any variations are clearly labelled when they 
occur. Therefore, no additional meaning should be attached unless specifically stated.

Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value 
within the shaded area at that time. The actual level is unimportant and does not affect 
normal operation.
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Further reading

This section lists publications by ARM Limited, and by third parties.

If you would like further information on ARM products, or if you have questions not 
answered by this document, please contact info@arm.com  or visit our web site at 
http://www.arm.com .

ARM publications

ARM Architecture Reference Manual (ARM DDI 0100).
ARM7TDMI Data Sheet (ARM DDI 0029).

Other publications

IEEE Std. 1149.1- 1990, Standard Test Access Port and Boundary-Scan Architecture.
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Feedback

Feedback on this document

If you have any comments on this document, please send email to errata@arm.com  
giving:

• the document title

• the document number

• the page number(s) to which your comments refer

• a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

Feedback on the ARM7TDMI-S

If you have any problems with the ARM7TDMI-S, please contact your supplier giving:

• the product name

• details of the platform you are running on, including the hardware platform, 
operating system type and version

• a small stand-alone sample of code that reproduces the problem

• a clear explanation of what you expected to happen, and what actually happened

• the commands you used, including any command-line options

• sample code output illustrating the problem.
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Chapter 1
Introduction

This chapter introduces the ARM7TDMI-S:

• About the ARM7TDMI-S on page 1-2

• ARM7TDMI-S architecture on page 1-4

• ARM7TDMI-S block, core, and functional diagrams on page 1-6

• ARM7TDMI-S instruction set summary on page 1-9.
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1.1 About the ARM7TDMI-S

The ARM7TDMI-S is a member of the ARM family of general-purpose 32-bit 
microprocessors. The ARM family offers high performance for very low power 
consumption and gate count.

The ARM architecture is based on Reduced Instruction Set Computer (RISC) 
principles. The RISC instruction set and related decode mechanism are much simpler 
than those of Complex Instruction Set Computer (CISC) designs. This simplicity gives:

• a high instruction throughput

• an excellent real-time interrupt response

• a small, cost-effective, processor macrocell.

1.1.1 The instruction pipeline

The ARM7TDMI-S uses a pipeline to increase the speed of the flow of instructions to 
the processor. This allows several operations to take place simultaneously, and the 
processing and memory systems to operate continuously.

A three-stage pipeline is used, so instructions are executed in three stages, fetch, decode 
and execute. This is shown in Figure 1-1.

Figure 1-1 The instruction pipeline

Note

The program counter points to the instruction being fetched rather than to the instruction 
being executed.

During normal operation, while one instruction is being executed, its successor is being 
decoded, and a third instruction is being fetched from memory.
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1.1.2 Memory access

The ARM7TDMI-S has a Von Neumann architecture, with a single 32-bit data bus 
carrying both instructions and data. Only load, store and swap instructions can access 
data from memory.

Data can be 8-bit bytes, 16-bit halfwords or 32-bit words. Words must be aligned to 
4-byte boundaries. Halfwords must be aligned to 2-byte boundaries.

1.1.3 Memory interface

The ARM7TDMI-S memory interface has been designed to allow performance 
potential to be realized, while minimizing the use of memory. Speed-critical control 
signals are pipelined to allow system control functions to be implemented in standard 
low-power logic. These control signals facilitate the exploitation of the fast-burst access 
modes supported by many on-chip and off-chip memory technologies.

The ARM7TDMI-S has four basic types of memory cycle:

• idle cycle

• nonsequential cycle

• sequential cycle

• coprocessor register transfer cycle.
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1.2 ARM7TDMI-S architecture

The ARM7TDMI-S processor has two instruction sets:

• the 32-bit ARM instruction set

• the 16-bit Thumb instruction set.

The ARM7TDMI-S is an implementation of the ARMv4T architecture. For full details 
of both the ARM and Thumb instruction sets, refer to the ARM Architecture Reference 
Manual.

1.2.1 Instruction compression

A typical 32-bit instruction set has the ability to manipulate 32-bit integers with single 
instructions, and to address a large address space much more efficiently than a 16-bit 
architecture. When processing 32-bit data, a 16-bit architecture takes at least two 
instructions to perform the same task as a single 32-bit instruction.

When a 16-bit architecture has only 16-bit instructions, and a 32-bit architecture has 
only 32-bit instructions, overall the 16-bit architecture has higher code density, and 
greater than half the performance of the 32-bit architecture. 

Thumb implements a 16-bit instruction set on a 32-bit architecture, giving higher 
performance than a 16-bit architecture, with higher code density than a 32-bit 
architecture

1.2.2 The Thumb instruction set

The Thumb instruction set is a subset of the most commonly used 32-bit ARM 
instructions. Thumb instructions are each 16 bits long, and have a corresponding 32-bit 
ARM instruction that has the same effect on the processor model. Thumb instructions 
operate with the standard ARM register configuration, allowing excellent 
interoperability between ARM and Thumb states. 

On execution, 16-bit Thumb instructions are transparently decompressed to full 32-bit 
ARM instructions in real time, without performance loss.

Thumb has all the advantages of a 32-bit core:

• 32-bit address space

• 32-bit registers

• 32-bit shifter and arithmetic logic unit (ALU)

• 32-bit memory transfer.

Thumb therefore offers a long branch range, powerful arithmetic operations and a large 
address space.
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Thumb code is typically 65% of the size of the ARM code, and provides 160% of the 
performance of ARM code when running on a processor connected to a 16-bit memory 
system. Thumb, therefore, makes the ARM7TDMI-S ideally suited to embedded 
applications with restricted memory bandwidth, where code density is important.

The availability of both 16-bit Thumb and 32-bit ARM instruction sets, gives designers 
the flexibility to emphasize performance or code size on a subroutine level, according 
to the requirements of their applications. For example, critical loops for applications 
such as fast interrupts and DSP algorithms can be coded using the full ARM instruction 
set, and linked with Thumb code.
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1.3 ARM7TDMI-S block, core, and functional diagrams

The ARM7TDMI-S architecture, core, and functional diagrams are illustrated in the 
following figures:

• the ARM7TDMI-S block diagram is shown in Figure 1-2

• the ARM7TDMI-S core is shown in Figure 1-3 on page 1-7

• the ARM7TDMI-S functional diagram is shown in Figure 1-4 on page 1-8.

Figure 1-2 ARM7TDMI-S block diagram
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Figure 1-3 ARM7TDMI-S core
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Figure 1-4 ARM7TDMI-S functional diagram



Introduction

ARM DDI 0084E © Copyright ARM Limited 1999. All rights reserved. 1-9

1.4 ARM7TDMI-S instruction set summary

This section provides a summary of the ARM and Thumb instruction sets:

• ARM instruction summary on page 1-10

• Thumb instruction summary on page 1-17.

A key to the instruction set tables is given in Table 1-1.

The ARM7TDMI-S is an implementation of the ARMv4T architecture. For a complete 
description of both instruction sets, please refer to the ARM Architecture Reference 
Manual.

Table 1-1 Key to tables

Description

{cond} Refer to Table Condition Field {cond}

<Oprnd2> Refer to Table Oprnd2

{field} Refer to Table Field  

S Sets condition codes (optional)

B Byte operation (optional)

H Halfword operation (optional)

T Forces address translation. Cannot be used with pre-indexed addresses

<a_mode2> Refer to Table Addressing Mode 2

<a_mode2P> Refer to Table Addressing Mode 2 (Privileged)

<a_mode3> Refer to Table Addressing Mode 3

<a_mode4L> Refer to Table Addressing Mode 4 (Load)

<a_mode4S> Refer to Table Addressing Mode 4 (Store)

<a_mode5> Refer to Table Addressing Mode 5

#32bit_Imm A 32-bit constant, formed by right-rotating an 8-bit value by an even number of bits

<reglist> A comma-separated list of registers, enclosed in braces ( { and } )
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1.4.1 ARM instruction summary

The ARM instruction set summary is given in Table 1-2.

Table 1-2 ARM instruction summary

Operation Assembler

Move Move MOV{cond}{S} Rd, <Oprnd2>

Move NOT MVN{cond}{S} Rd, <Oprnd2>

Move SPSR to register MRS{cond} Rd, SPSR

Move CPSR to register MRS{cond} Rd, CPSR

Move register to SPSR MSR{cond} SPSR{field}, Rm

Move register to CPSR MSR{cond} CPSR{field}, Rm

Move immediate to SPSR flags MSR{cond} SPSR_f, #32bit_Imm

Move immediate to CPSR flags MSR{cond} CPSR_f, #32bit_Imm

Arithmetic Add ADD{cond}{S} Rd, Rn, <Oprnd2>

Add with carry ADC{cond}{S} Rd, Rn, <Oprnd2>

Subtract SUB{cond}{S} Rd, Rn, <Oprnd2>

Subtract with carry SBC{cond}{S} Rd, Rn, <Oprnd2>

Subtract reverse subtract RSB{cond}{S} Rd, Rn, <Oprnd2>

Subtract reverse subtract with carry RSC{cond}{S} Rd, Rn, <Oprnd2>

Multiply MUL{cond}{S} Rd, Rm, Rs

Multiply accumulate MLA{cond}{S} Rd, Rm, Rs, Rn

Multiply unsigned long UMULL{cond}{S} RdLo, RdHi, Rm, Rs

Multiply unsigned accumulate long UMLAL{cond}{S} RdLo, RdHi, Rm, Rs

Multiply signed long SMULL{cond}{S} RdLo, RdHi, Rm, Rs

Multiply signed accumulate long SMLAL{cond}{S} RdLo, RdHi, Rm, Rs

Compare CMP{cond} Rd, <Oprnd2>

Compare negative CMN{cond} Rd, <Oprnd2>

Logical Test TST{cond} Rn, <Oprnd2>

Test equivalence TEQ{cond} Rn, <Oprnd2>

AND AND{cond}{S} Rd, Rn, <Oprnd2>

EOR EOR{cond}{S} Rd, Rn, <Oprnd2>

ORR ORR{cond}{S} Rd, Rn, <Oprnd2>

Bit clear BIC{cond}{S} Rd, Rn, <Oprnd2>

Branch Branch B{cond} label

Branch with link BL{cond} label

Branch and exchange instruction setBX{cond} Rn
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Load Word LDR{cond} Rd, <a_mode2>

Word with user-mode privilege LDR{cond}T Rd, <a_mode2P>

Byte LDR{cond}B Rd, <a_mode2>

Byte with user-mode privilege LDR{cond}BT Rd, <a_mode2P>

Byte signed LDR{cond}SB Rd, <a_mode3>

Halfword LDR{cond}H Rd, <a_mode3>

Halfword signed LDR{cond}SH Rd, <a_mode3>

Multiple

Block data operations

Increment before LDM{cond}IB Rd{!}, <reglist>{^}

Increment after LDM{cond}IA Rd{!}, <reglist>{^}

Decrement before LDM{cond}DB Rd{!}, <reglist>{^}

Decrement after LDM{cond}DA Rd{!}, <reglist>{^}

Stack operations LDM{cond}<a_mode4L> Rd{!}, <reglist>

Stack operations and restore CPSR LDM{cond}<a_mode4L> Rd{!}, <reglist+pc>^

User registers LDM{cond}<a_mode4L> Rd{!}, <reglist>^

Store Word STR{cond} Rd, <a_mode2>

Word with user-mode privilege STR{cond}T Rd, <a_mode2P>

Byte STR{cond}B Rd, <a_mode2>

Byte with user-mode privilege STR{cond}BT Rd, <a_mode2P>

Halfword STR{cond}H Rd, <a_mode3>

Multiple

Block data operations

Increment before STM{cond}IB Rd{!}, <reglist>{^}

Increment after STM{cond}IA Rd{!}, <reglist>{^}

Decrement before STM{cond}DB Rd{!}, <reglist>{^}

Decrement after STM{cond}DA Rd{!}, <reglist>{^}

Stack operations STM{cond}<a_mode4S> Rd{!}, <reglist>

User registers STM{cond}<a_mode4S> Rd{!}, <reglist>^

Swap Word SWP{cond} Rd, Rm, [Rn]

Byte SWP{cond}B Rd, Rm, [Rn]

Table 1-2 ARM instruction summary (continued)

Operation Assembler
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Addressing mode 2 is summarized in Table 1-3.

Coprocessors Data operations CDP{cond} p<cpnum>, <op1>, CRd, CRn, CRm, <op2>

Move to ARM reg from coproc MRC{cond} p<cpnum>, <op1>, Rd, CRn, CRm, <op2>

Move to coproc from ARM reg MCR{cond} p<cpnum>, <op1>, Rd, CRn, CRm, <op2>

Load LDC{cond} p<cpnum>, CRd, <a_mode5>

Store STC{cond} p<cpnum>, CRd, <a_mode5>

Software Interrupt SWI 24bit_Imm

Table 1-2 ARM instruction summary (continued)

Operation Assembler

Table 1-3 Addressing mode 2

Addressing mode 2

Immediate offset [Rn, #+/-12bit_Offset]

Register offset [Rn, +/-Rm]

Scaled register offset [Rn, +/-Rm, LSL #5bit_shift_imm]

[Rn, +/-Rm, LSR #5bit_shift_imm]

[Rn, +/-Rm, ASR #5bit_shift_imm]

[Rn, +/-Rm, ROR #5bit_shift_imm]

[Rn, +/-Rm, RRX]

Pre-indexed offset

Immediate [Rn, #+/-12bit_Offset]!

Register [Rn, +/-Rm]!

Scaled register [Rn, +/-Rm, LSL #5bit_shift_imm]!

[Rn, +/-Rm, LSR #5bit_shift_imm]!

[Rn, +/-Rm, ASR #5bit_shift_imm]!

[Rn, +/-Rm, ROR #5bit_shift_imm]!

[Rn, +/-Rm, RRX]!

Post-indexed offset

Immediate [Rn], #+/-12bit_Offset

Register [Rn], +/-Rm

Scaled register [Rn], +/-Rm, LSL #5bit_shift_imm

[Rn], +/-Rm, LSR #5bit_shift_imm

[Rn], +/-Rm, ASR #5bit_shift_imm

[Rn], +/-Rm, ROR #5bit_shift_imm

[Rn, +/-Rm, RRX]
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Addressing mode 2 (privileged) is summarized in Table 1-4.

Addressing mode 3 is summarized in Table 1-5.

Table 1-4 Addressing mode 2 (privileged)

Addressing mode 2 (privileged)

Immediate offset [Rn, #+/-12bit_Offset]

Register offset [Rn, +/-Rm]

Scaled register offset [Rn, +/-Rm, LSL #5bit_shift_imm]

[Rn, +/-Rm, LSR #5bit_shift_imm]

[Rn, +/-Rm, ASR #5bit_shift_imm]

[Rn, +/-Rm, ROR #5bit_shift_imm]

[Rn, +/-Rm, RRX]

Post-indexed offset

Immediate [Rn], #+/-12bit_Offset

Register [Rn], +/-Rm

Scaled register [Rn], +/-Rm, LSL #5bit_shift_imm

[Rn], +/-Rm, LSR #5bit_shift_imm

[Rn], +/-Rm, ASR #5bit_shift_imm

[Rn], +/-Rm, ROR #5bit_shift_imm

[Rn, +/-Rm, RRX]

Table 1-5 Addressing mode 3

Addressing mode 3 - signed byte and halfword data transfer

Immediate offset [Rn, #+/-8bit_Offset]

Pre-indexed [Rn, #+/-8bit_Offset]!

Post-indexed [Rn], #+/-8bit_Offset

Register [Rn, +/-Rm]

Pre-indexed [Rn, +/-Rm]!

Post-indexed [Rn], +/-Rm
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Addressing mode 4 (load) is summarized in Table 1-6.

Addressing mode 4 (store) is summarized in Table 1-7.

Addressing mode 5 (load) is summarized in Table 1-8.

Table 1-6 Addressing mode 4 (load)

Addressing mode 4 (Load)

Addressing mode Stack type

IA Increment after FD Full descending

IB Increment before ED Empty descending

DA Decrement after FA Full ascending

DB Decrement before EA Empty ascending

Table 1-7 Addressing mode 4 (store)

Addressing mode 4 (Store)

Addressing mode Stack type

IA Increment after EA Empty ascending

IB Increment before FA Full ascending

DA Decrement after ED Empty descending

DB Decrement before FD Full descending

Table 1-8 Addressing mode 5

Addressing mode 5 - coprocessor data transfer

Immediate offset [Rn, #+/-(8bit_Offset*4)]

Pre-indexed [Rn, #+/-(8bit_Offset*4)]!

Post-indexed [Rn], #+/-(8bit_Offset*4)
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Oprnd2 is summarized in Table 1-9.

Fields are summarized in Table 1-10.

Table 1-9 Oprnd2

Oprnd2

Immediate value #32bit_Imm

Logical shift left Rm LSL #5bit_Imm

Logical shift right Rm LSR #5bit_Imm

Arithmetic shift right Rm ASR #5bit_Imm

Rotate right Rm ROR #5bit_Imm

Register Rm

Logical shift left Rm LSL Rs

Logical shift right Rm LSR Rs

Arithmetic shift right Rm ASR Rs

Rotate right Rm ROR Rs

Rotate right extended Rm RRX

Table 1-10 Fields

Field

Suffix Sets

_c Control field mask bit (bit 3)

_f Flags field mask bit (bit 0)

_s Status field mask bit (bit 1)

_x Extension field mask bit (bit 2)
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Condition fields are summarized in Table 1-11.

Table 1-11 Condition fields

Condition field {cond}

Suffix Description

EQ Equal

NE Not equal

CS Unsigned higher or same

CC Unsigned lower

MI Negative

PL Positive or zero

VS Overflow

VC No overflow

HI Unsigned higher

LS Unsigned lower or same

GE Greater or equal

LT Less than

GT Greater than

LE Less than or equal

AL Always
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1.4.2 Thumb instruction summary

The Thumb instruction set summary is given in Table 1-12.

Table 1-12 Thumb instruction summary

Operation Assembler

Move Immediate MOV Rd, #8bit_Imm

High to Low MOV Rd, Hs

Low to High MOV Hd, Rs

High to High MOV Hd, Hs

Arithmetic Add ADD Rd, Rs, #3bit_Imm

Add Low and Low ADD Rd, Rs, Rn

Add High to Low ADD Rd, Hs

Add Low to High ADD Hd, Rs

Add High to High ADD Hd, Hs

Add Immediate ADD Rd, #8bit_Imm

Add Value to SP ADD SP, #7bit_Imm
ADD SP, #-7bit_Imm

Add with carry ADC Rd, Rs

Subtract SUB Rd, Rs, Rn
SUB Rd, Rs, #3bit_Imm

Subtract Immediate SUB Rd, #8bit_Imm

Subtract with carry SBC Rd, Rs

Negate NEG Rd, Rs

Multiply MUL Rd, Rs

Compare Low and Low CMP Rd, Rs

Compare Low and High CMP Rd, Hs

Compare High and Low CMP Hd, Rs

Compare High and High CMP Hd, Hs

Compare Negative CMN Rd, Rs

Compare Immediate CMP Rd, #8bit_Imm

Logical AND AND Rd, Rs

EOR EOR Rd, Rs

OR ORR Rd, Rs

Bit clear BIC Rd, Rs

Move NOT MVN Rd, Rs

Test bits TST Rd, Rs
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Shift/Rotate Logical shift left LSL Rd, Rs, #5bit_shift_imm
LSL Rd, Rs

Logical shift right LSR Rd, Rs, #5bit_shift_imm
LSR Rd, Rs

Arithmetic shift right ASR Rd, Rs, #5bit_shift_imm
ASR Rd, Rs

Rotate right ROR Rd, Rs

Branch Conditional

if Z set BEQ label

if Z clear BNE label

if C set BCS label

if C clear BCC label

if N set BMI label

if N clear BPL label

if V set BVS label

if V clear BVC label

if C set and Z clear BHI label

if C clear and Z set BLS label

if N set and V set, or
if N clear and V clear

BGE label

if N set and V clear, or
if N clear and V set

BLT label

if Z clear, and N or V set, or
if Z clear, and N or V clear

BGT label

if Z set, or
N set and V clear, or
N clear and V set

BLE label

Unconditional B label

Long branch with link BL label

Optional state change

to address held in Lo reg BX Rs

to address held in Hi reg BX Hs

Load With immediate offset

word LDR Rd, [Rb, #7bit_offset]

halfword LDRH Rd, [Rb, #6bit_offset]

byte LDRB Rd, [Rb, #5bit_offset]

With register offset

Table 1-12 Thumb instruction summary (continued)

Operation Assembler
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word LDR Rd, [Rb, Ro]

halfword LDRH Rd, [Rb, Ro]

signed halfword LDRSH Rd, [Rb, Ro]

byte LDRB Rd, [Rb, Ro]

signed byte LDRSB Rd, [Rb, Ro]

PC-relative LDR Rd, [PC, #10bit_Offset]

SP-relative LDR Rd, [SP, #10bit_Offset]

Address

using PC ADD Rd, PC, #10bit_Offset

using SP ADD Rd, SP, #10bit_Offset

Multiple LDMIA Rb!, <reglist>

Store With immediate offset

word STR Rd, [Rb, #7bit_offset]

halfword STRH Rd, [Rb, #6bit_offset]

byte STRB Rd, [Rb, #5bit_offset]

With register offset

word STR Rd, [Rb, Ro]

halfword STRH Rd, [Rb, Ro]

byte STRB Rd, [Rb, Ro]

SP-relative STR Rd, [SP, #10bit_offset]

Multiple STMIA Rb!, <reglist>

Push/Pop Push registers onto stack PUSH <reglist>

Push LR and registers onto stack PUSH <reglist, LR>

Pop registers from stack POP <reglist>

Pop registers and PC from stack POP <reglist, PC>

Software Interrupt SWI 8bit_Imm

Table 1-12 Thumb instruction summary (continued)

Operation Assembler
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Chapter 2
Programmer’s Model

This chapter describes the ARM7TDMI-S programmer’s model:

• About the programmer’s model on page 2-2

• Processor operating states on page 2-3

• Memory formats on page 2-4

• Instruction length on page 2-5

• Data types on page 2-6

• Operating modes on page 2-7

• Registers on page 2-8

• The program status registers on page 2-14

• Exceptions on page 2-17

• Interrupt latencies on page 2-24

• Reset on page 2-25.
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2.1 About the programmer’s model

The ARM7TDMI-S processor core implements ARM architecture v4T, which includes 
the 32-bit ARM instruction set, and the 16-bit Thumb instruction set. The programmer’s 
model is described fully in the ARM Architecture Reference Manual.
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2.2 Processor operating states

The ARM7TDMI-S has two operating states:

ARM state 32-bit, word-aligned ARM instructions are executed in this state.

Thumb state 16-bit, halfword-aligned Thumb instructions. 

In Thumb state, the program counter (PC) uses bit 1 to select between alternate 
halfwords.

Note

Transition between ARM and Thumb states does not affect the processor mode or the 
register contents.

2.2.1 Switching state

The operating state of the ARM7TDMI-S core can be switched between ARM state and 
Thumb state using the BX instruction. This is described fully in the ARM Architecture 
Reference Manual.

All exception handling is performed in ARM state. If an exception occurs in Thumb 
state, the processor reverts to ARM state. The transition back to Thumb state occurs 
automatically on return.
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2.3 Memory formats

The ARM7TDMI-S views memory as a linear collection of bytes numbered in 
ascending order from zero. Bytes 0 to 3 hold the first stored word, bytes 4 to 7 hold the 
second stored word, and so on.

The ARM7TDMI-S can treat words in memory as being stored in either:

• big-endian format

• little-endian format.

2.3.1 Big-endian format

In big-endian format, the ARM7TDMI-S stores the most significant byte of a word at 
the lowest-numbered byte, and the least significant byte at the highest-numbered byte. 
So byte 0 of the memory system connects to data lines 31 through 24. This is shown in 
Figure 2-1:

Figure 2-1 Little-endian addresses of bytes within words

2.3.2 Little-endian format

In little-endian format, the lowest-numbered byte in a word is considered the 
least-significant byte of the word and the highest-numbered byte is the most significant. 
So byte 0 of the memory system connects to data lines 7 through 0. This is shown in 
Figure 2-2:

Figure 2-2 Big-endian addresses of bytes within words
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2.4 Instruction length

Instructions are either: 

• 32 bits long (in ARM state)

• 16 bits long (in Thumb state).
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2.5 Data types

The ARM7TDMI-S supports the following data types:

• word (32-bit)

• halfword (16-bit)

• byte (8-bit).

You must align these as follows:

• word quantities must be aligned to four-byte boundaries

• halfword quantities must be aligned to two-byte boundaries

• byte quantities can be placed on any byte boundary.
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2.6 Operating modes

The ARM7TDMI-S has seven modes of operation:

• User mode is the usual ARM program execution state, and is used for executing 
most application programs.

• Fast interrupt (FIQ) mode supports a data transfer or channel process.

• Interrupt (IRQ) mode is used for general-purpose interrupt handling.

• Supervisor mode is a protected mode for the operating system.

• Abort mode is entered after a data or instruction prefetch abort.

• System mode is a privileged user mode for the operating system.

• Undefined mode is entered when an undefined instruction is executed.

Modes other than user mode are collectively known as privileged modes. Privileged 
modes are used to service interrupts or exceptions, or to access protected resources.
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2.7 Registers

The ARM7TDMI-S has a total of 37 registers:

• 31 general-purpose 32-bit registers

• 6 status registers.

These registers are not all accessible at the same time. The processor state and operating 
mode determine which registers are available to the programmer.

2.7.1 The ARM-state register set

In ARM state, 16 general registers and one or two status registers are accessible at any 
one time. In privileged modes, mode-specific banked registers become available. 
Figure 2-3 on page 2-10 shows which registers are available in each mode.

The ARM-state register set contains 16 directly-accessible registers, r0 to r15. A further 
register, the Current Program Status Register (CPSR), contains condition code flags 
and the current mode bits. Registers r0 to r13 are general-purpose registers used to hold 
either data or address values. Registers r14, r 15 and the CPSR have the following 
special functions: 

Link register Register 14 is used as the subroutine link register (LR).

r14 receives a copy of r15 when a Branch with Link (BL) 
instruction is executed.

At all other times r14 can be treated as a general-purpose register.
The corresponding banked registers r14_svc, r14_irq, r14_fiq, 
r14_abt and r14_und are similarly used to hold the return values 
of r15 when interrupts and exceptions arise, or when BL 
instructions are executed within interrupt or exception routines.

Program counter Register 15 holds the PC.

In ARM state, bits [1:0] of r15 are zero. Bits [31:2] contain the PC. 
In Thumb state, bit [0] is zero. Bits [31:1] contain the PC.

In privileged modes, another register, the Saved Program Status Register (SPSR), is 
accessible. This contains the condition code flags and the mode bits saved as a result of 
the exception which caused entry to the current mode.
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Banked registers have a mode identifier which shows to which user mode register they 
are mapped. These mode identifiers are shown in Table 2-1.

FIQ mode has seven banked registers mapped to r8–r14 (r8_fiq–r14_fiq).

In ARM state, many FIQ handlers do not need to save any registers.

The user, IRQ, supervisor, abort, and undefined modes each have two banked registers 
mapped to 13 and r14, allowing a private stack pointer and link register for each mode.

Table 2-1 Register mode identifiers

Mode Mode identifier

User usr

Fast interrupt fiq

Interrupt irq

Supervisor svc

Abort abt

System sys

Undefined und
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Figure 2-3 shows the ARM-state registers.

Figure 2-3 Register organization in ARM state
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2.7.2 The Thumb-state register set

The Thumb-state register set is a subset of the ARM-state set. The programmer has 
direct access to:

• eight general registers, r0–r7

• the PC

• a stack pointer (SP)

• an LR

• the CPSR. 

There are banked SPs, LRs, and SPSRs for each privileged mode. This register set is 
shown in Figure 2-4.

Figure 2-4 Register organization in Thumb state
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2.7.3 The relationship between ARM-state and Thumb-state registers

The Thumb-state registers relate to the ARM-state registers in the following way: 

• Thumb-state r0–r7 and ARM-state r0–r7 are identical.

• Thumb-state CPSR and SPSRs and ARM-state CPSR and SPSRs are identical. 

• Thumb-state SP maps onto ARM-state r13. 

• Thumb-state LR maps onto ARM-state r14. 

• The Thumb-state PC maps onto the ARM-state PC (r15).

These relationships are shown in Figure 2-5.

Figure 2-5 Mapping of Thumb-state registers onto ARM-state registers
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2.7.4 Accessing high registers in Thumb state

In Thumb state, the high registers (r8–r15) are not part of the standard register set. The 
assembly language programmer has limited access to them, but can use them for fast 
temporary storage.

You can use special variants of the MOV instruction to transfer a value from a low 
register (in the range r0–r7) to a high register, and from a high register to a low register. 
The CMP instruction allows you to compare high register values with low register 
values. The ADD instruction allows you to add high register values to low register 
values. For more details, please refer to the ARM Architecture Reference Manual.
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2.8 The program status registers

The ARM7TDMI-S contains a CPSR, and five SPSRs for exception handlers to use. 
The program status registers:

• hold information about the most recently performed ALU operation

• control the enabling and disabling of interrupts

• set the processor operating mode.

The arrangement of bits is shown in Figure 2-6.

Figure 2-6 Program status register format
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2.8.2 The control bits

The bottom eight bits of a PSR are known collectively as the control bits. They are the: 

• interrupt disable bits

• T bit

• mode bits.

The control bits change when an exception occurs. When the processor is operating in 
a privileged mode, software can manipulate these bits.

Interrupt disable bits

The I and F bits are the interrupt disable bits:

• when the I bit is set, IRQ interrupts are disabled

• when the F bit is set, FIQ interrupts are disabled.

T bit

The T bit reflects the operating state:

• when the T bit is set, the processor is executing in Thumb state

• when the T bit is clear, the processor executing in ARM state. 

The operating state is reflected by the CPTBIT  external signal.

Caution
Never use an MSR instruction to force a change to the state of the T bit in the CPSR. If 
you do this, the processor enters an unpredictable state.

Mode bits

The M4, M3, M2, M1, and M0 bits (M[4:0]) are the mode bits. These bits determine the 
processor operating mode as shown in Table 2-2. Not all combinations of the mode bits 
define a valid processor mode, so take care to use only the bit combinations shown.

Table 2-2 PSR mode bit values

M[4:0] Mode Visible Thumb-state registers Visible ARM-state registers

10000 User r0–r7, SP, LR, PC, CPSR r0–r14, PC, CPSR

10001 FIQ r0–r7, SP_fiq, LR_fiq PC, CPSR, SPSR_fiq r0–r7, r8_fiq–r14_fiq, PC, CPSR, SPSR_fiq

10010 IRQ r0–r7, SP_irq, LR_irq, PC, CPSR, SPSR_irq r0–r12, r13_irq, r14_irq, PC, CPSR, SPSR_irq
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An illegal value programmed into M[4:0] causes the processor to enter an 
unrecoverable state. If this occurs, apply reset.

2.8.3 Reserved bits 

The remaining bits in the PSRs are unused, but are reserved. When changing a PSR flag 
or control bits, make sure that these reserved bits are not altered. Also, make sure that 
your program does not rely on reserved bits containing specific values because future 
processors may have these bits set to one or zero.

10011 Supervisor r0–r7, SP_svc, LR_svc, PC, CPSR, 
SPSR_svc

r0–r12, r13_svc, r14_svc, PC, CPSR, 
SPSR_svc

10111 Abort r0–r7, SP_abt, LR_abt, PC, CPSR, SPSR_abt r0–r12, r13_abt, r14_abt, PC, CPSR, 
SPSR_abt

11011 Undefined r0–r7, SP_und, LR_und, PC, CPSR, 
SPSR_und

r0–r12, r13_und, r14_und, PC, CPSR

11111 System r0–r7, SP, LR, PC, CPSR r0–r14, PC, CPSR

Table 2-2 PSR mode bit values (continued)

M[4:0] Mode Visible Thumb-state registers Visible ARM-state registers
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2.9 Exceptions

Exceptions arise whenever the normal flow of a program has to be halted temporarily, 
for example to service an interrupt from a peripheral. Before attempting to handle an 
exception, the ARM7TDMI-S preserves the current processor state so that the original 
program can resume when the handler routine has finished.

If two or more exceptions arise simultaneously, the exceptions are dealt with in the 
fixed order given in Exception priorities on page 2-23.

This section provides details of the ARM7TDMI-S exception handling:

• Exception entry/exit summary

• Entering an exception on page 2-18

• Leaving an exception on page 2-18.

2.9.1 Exception entry/exit summary

Table 2-3 summarizes the PC value preserved in the relevant r14 on exception entry, 
and the recommended instruction for exiting the exception handler.

Table 2-3 Exception entry/exit

Exception
or entry 

Return instruction
Previous state
ARM r14_x Thumb r14_x

Notes

BL MOV PC, R14 PC + 4 PC + 2 Where the PC is the address of the BL, 
SWI, or undefined instruction fetch, 
that had the prefetch abort.SWI MOVS PC, R14_svc PC + 4 PC + 2

UDEF MOVS PC, R14_und PC + 4 PC + 2

PABT SUBS PC, R14_abt, #4 PC + 4 PC + 4

FIQ SUBS PC, R14_fiq, #4 PC + 4 PC + 4 Where the PC is the address of the 
instruction that was not executed 
because the FIQ or IRQ took priority.IRQ SUBS PC, R14_irq, #4 PC + 4 PC + 4

DABT SUBS PC, R14_abt, #8 PC + 8 PC + 8 Where the PC is the address of the Load 
or Store instruction that generated the 
data abort.

RESET NA - - The value saved in r14_svc upon reset 
is UNPREDICTABLE.
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2.9.2 Entering an exception

When handling an exception the ARM7TDMI-S: 

1. Preserves the address of the next instruction in the appropriate LR. When the 
exception entry is from:

• ARM state, the ARM7TDMI-S copies the address of the next instruction 
into the LR (current PC + 4 or PC + 8 depending on the exception). 

• Thumb state, the ARM7TDMI-S writes the value of the PC into the LR, 
offset by a value (current PC + 4 or PC + 8 depending on the exception) 
that will cause the program to resume from the correct place on return. 

The exception handler does not need to determine the state when entering an 
exception. For example, in the case of a SWI, MOVS PC, r14_svc  always 
returns to the next instruction regardless of whether the SWI was executed in 
ARM or Thumb state.

2. Copies the CPSR into the appropriate SPSR.

3. Forces the CPSR mode bits to a value which depends on the exception.

4. Forces the PC to fetch the next instruction from the relevant exception vector.

The ARM7TDMI-S may also set the interrupt disable flags to prevent otherwise 
unmanageable nestings of exceptions.

Note

Exceptions are always handled in ARM state. When the processor is in Thumb state and 
an exception occurs, the switch to ARM state takes place automatically when the 
exception vector address is loaded into the PC.

2.9.3 Leaving an exception

When an exception is completed, the exception handler must:

1. Move the LR, minus an offset to the PC. The offset varies according to the type 
of exception, as shown in Table 2-3 on page 2-17.

2. Copy the SPSR back to the CPSR.

3. Clear the interrupt disable flags that were set on entry.

Note

The action of restoring the CPSR from the SPSR automatically resets the T bit to 
whatever value it held immediately prior to the exception.
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2.9.4 Fast interrupt request

The Fast Interrupt Request (FIQ) exception supports data transfers or channel 
processes. In ARM state, FIQ mode has eight private registers to remove the need for 
register saving (thus minimizing the overhead of context switching).

An FIQ is externally generated by taking the nFIQ  signal input LOW.

Irrespective of whether exception entry is from ARM state or from Thumb state, an FIQ 
handler returns from the interrupt by executing:
SUBS PC,R14_fiq,#4

FIQ exceptions may be disabled within a privileged mode by setting the CPSR F flag. 
When the F flag is clear, the ARM7TDMI-S checks for a LOW level on the output of 
the FIQ synchronizer at the end of each instruction.

2.9.5 Interrupt request

The Interrupt Request (IRQ) exception is a normal interrupt caused by a LOW level on 
the nIRQ  input. IRQ has a lower priority than FIQ, and is masked on entry to an FIQ 
sequence. You can disable IRQ at any time, by setting the I bit in the CPSR from a 
privileged mode.

Irrespective of whether exception entry is from ARM state or Thumb state, an IRQ 
handler returns from the interrupt by executing:
SUBS PC,R14_irq,#4

2.9.6 Abort

An abort indicates that the current memory access cannot be completed. An abort is 
signalled by the external ABORT  input. The ARM7TDMI-S checks for the abort 
exception at the end of memory access cycles.

There are two types of abort:

• a prefetch abort occurs during an instruction prefetch

• a data abort occurs during a data access.
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Prefetch abort

When a prefetch abort occurs, the ARM7TDMI-S marks the prefetched instruction as 
invalid, but does not take the exception until the instruction reaches the execute stage 
of the pipeline. If the instruction is not executed, for example because it fails its 
condition codes, or because a branch occurs while it is in the pipeline, the abort does 
not take place.

After dealing with the reason for the abort, the handler executes the following 
instruction irrespective of the processor operating state:
SUBS PC,R14_abt,#4

This action restores both the PC and the CPSR, and retries the aborted instruction.

Data abort

When a data abort occurs, the action taken depends on the instruction type:

• Single data transfer instructions (LDR, STR) write back modified base registers. 
The abort handler must be aware of this.

• The swap instruction (SWP) aborts as though it had not been executed. (The abort 
must occur on the read access of the SWP instruction.)

• Block data transfer instructions (LDM, STM) complete. When write-back is set, 
the base is updated. If the instruction would have overwritten the base with data 
(when it has the base register in the transfer list), the ARM7TDMI-S prevents the 
overwriting. The ARM7TDMI-S prevents all register overwriting after an abort is 
indicated, which means that the ARM7TDMI-S always preserves r15 (always the 
last register to be transferred) in an aborted LDM instruction.

The abort mechanism allows the implementation of a demand-paged virtual memory 
system. In such a system, the processor is allowed to generate arbitrary addresses. When 
the data at an address is unavailable, the Memory Management Unit (MMU) signals an 
abort. The abort handler must then work out the cause of the abort, make the requested 
data available, and retry the aborted instruction. The application program needs no 
knowledge of the amount of memory available to it, nor is its state in any way affected 
by the abort.

After fixing the reason for the abort, the handler must execute the following return 
instruction irrespective of the processor operating state at the point of entry:
SUBS PC,R14_abt,#8

This action restores both the PC and the CPSR, and retries the aborted instruction.
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2.9.7 Software interrupt instruction

The Software Interrupt instruction (SWI) is used to enter Supervisor mode, usually to 
request a particular supervisor function. A SWI handler returns by executing the 
following irrespective of the processor operating state:
MOV SPC, R14_svc

This action restores the PC and CPSR, and returns to the instruction following the SWI. 
The SWI handler reads the opcode to extract the SWI function number.

2.9.8 Undefined instruction

When the ARM7TDMI-S encounters an instruction that neither it, nor any coprocessor 
in the system can handle, the ARM7TDMI-S takes the undefined instruction trap. 
Software can use this mechanism to extend the ARM instruction set by emulating 
undefined coprocessor instructions. 

Note

The ARM7TDMI-S is fully compliant with the ARM Instruction Set Architecture 
version v4T, and traps all instruction bit patterns that are classified as undefined.

After emulating the failed instruction, the trap handler executes the following 
irrespective of the processor operating state:
MOVS PC,R14_und

This action restores the CPSR and returns to the next instruction after the undefined 
instruction.

For more information about undefined instructions, refer to the ARM Architecture 
Reference Manual.
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2.9.9 Exception vectors 

Table 2-4 shows the exception vector addresses. In the table, I and F represent the 
previous value.

Table 2-4 Exception vectors

Address  Exception Mode on entry
I state on 
entry

F state on 
entry

0x00000000 Reset Supervisor Disabled Disabled

0x00000004 Undefined instruction Undefined I F

0x00000008 Software interrupt Supervisor Disabled F

0x0000000C Abort (prefetch) Abort I F

0x00000010 Abort (data) Abort I F

0x00000014 Reserved Reserved - -

0x00000018 IRQ IRQ Disabled F

0x0000001C FIQ FIQ Disabled Disabled
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2.9.10 Exception priorities

When multiple exceptions arise at the same time, a fixed priority system determines the 
order in which they are handled: 

1 Reset (highest priority)

2 Data abort

3 FIQ

4 IRQ

5 Prefetch abort

6 Undefined instruction and SWI (lowest priority).

Some exceptions cannot occur together:

• The undefined instruction and SWI exceptions are mutually exclusive. Each 
corresponds to a particular (non-overlapping) decoding of the current 
instruction.

• When FIQs are enabled, and a data abort occurs at the same time as an FIQ, the 
ARM7TDMI-S enters the data abort handler, and proceeds immediately to the 
FIQ vector.

A normal return from the FIQ causes the data abort handler to resume execution.

Data aborts must have higher priority than FIQs to ensure that the transfer error 
does not escape detection. You must add the time for this exception entry to the 
worst-case FIQ latency calculations in a system that uses aborts to support 
virtual memory.
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2.10 Interrupt latencies

The calculations for maximum and minimum latency are described below.

2.10.1 Maximum interrupt latencies

When FIQs are enabled, the worst-case latency for FIQ comprises a combination of:

• The longest time the request can take to pass through the synchronizer, 
Tsyncmax. Tsyncmax is two processor cycles.

• The time for the longest instruction to complete, Tldm. (The longest instruction, 
is an LDM which loads all the registers including the PC.) Tldm is 20 cycles in a 
zero wait state system.

• The time for the data abort entry, Texc. Texc is three cycles.

• The time for FIQ entry, Tfiq. Tfiq is two cycles.

The total latency is therefore 27 processor cycles, just under 0.7 microseconds in a 
system that uses a continuous 40MHz processor clock. At the end of this time, the 
ARM7TDMI-S executes the instruction at 0x1c.

The maximum IRQ latency calculation is similar, but must allow for the fact that FIQ, 
having higher priority, could delay entry into the IRQ handling routine for an arbitrary 
length of time.

2.10.2 Minimum interrupt latencies

The minimum latency for FIQ or IRQ is the shortest time the request can take through 
the synchronizer, Tsyncmin, plus Tfiq (four processor cycles).
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2.11 Reset

When a reset occurs, the nRESET signal goes LOW, and the ARM7TDMI-S abandons 
the executing instruction.

When nRESET goes HIGH again the ARM7TDMI-S:

1. Forces M[4:0] to 10011 (Supervisor mode), sets the I and F bits in the CPSR, 
and clears the CPSR T bit.

2. Forces the PC to fetch the next instruction from address 0x00.

3. Reverts to ARM state, and resumes execution.

After reset, all register values except the PC and CPSR are indeterminate.
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Chapter 3 
Memory Interface

This chapter describes the ARM7TDMI-S memory interface:

• About the memory interface on page 3-2

• Bus interface signals on page 3-3

• Bus cycle types on page 3-4

• Addressing signals on page 3-10

• Data timed signals on page 3-13

• Use of CLKEN to control bus cycles on page 3-17.
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3.1 About the memory interface

The ARM7TDMI-S has a Von Neumann architecture, with a single 32-bit data bus 
carrying both instructions and data. Only load, store and swap instructions can access 
data from memory.

The ARM7TDMI-S supports four basic types of memory cycle:

• nonsequential

• sequential

• internal

• coprocessor register transfer.
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3.2 Bus interface signals

The signals in the ARM7TDMI-S bus interface can be grouped into four categories:

• clocking and clock control

• address class signals

• memory request signals

• data timed signals.

The clocking and clock control signals are:

• CLK
• CLKEN
• nRESET

The address class signals are:

• ADDR[31:0]
• WRITE
• SIZE[1:0]
• PROT[1:0]
• LOCK

The memory request signals are TRANS[1:0].

The data timed signals are:

• WDATA[31:0]
• RDATA[31:0]
• ABORT

Each of these signal groups shares a common timing relationship to the bus interface 
cycle. All signals in the ARM7TDMI-S bus interface are generated from, or sampled 
by the rising edge of CLK . 

Bus cycles can be extended using the CLKEN signal. This signal is introduced in Use 
of CLKEN to control bus cycles on page 3-17. All other sections of this chapter describe 
a simple system in which CLKEN  is permanently HIGH.
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3.3 Bus cycle types 

The ARM7TDMI-S bus interface is pipelined, and so the address class signals and the 
memory request signals are broadcast in the bus cycle ahead of the bus cycle to which 
they refer. This gives the maximum time for a memory cycle to decode the address, and 
respond to the access request. 

A single memory cycle is shown in Figure 3-1.

Figure 3-1 Simple memory cycle

The ARM7TDMI-S bus interface can perform four different types of memory cycle. 
These are indicated by the state of the TRANS[1:0] signals. Memory cycle types are 
encoded on the TRANS[1:0] signals as shown in Table 3-1.

A memory controller for the ARM7TDMI-S should commit to a memory access only 
on an N cycle or an S cycle.

CLK

Address
class signals

TRANS[1:0]

WDATA[31:0]
(Write)

RDATA[31:0]
(Read)

Address

Cycle type

Write data

Read
data

Bus cycle

Table 3-1 Cycle types

TRANS[1:0] Cycle type Description

00 I cycle Internal cycle

01 C cycle Coprocessor register transfer cycle

10 N cycle Nonsequential cycle

11 S cycle Sequential cycle
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The ARM7TDMI-S has four basic types of memory cycle:

• a nonsequential cycle, during which the ARM7TDMI-S core requests a transfer 
to or from an address which is unrelated to the address used in the preceding 
cycle

• a sequential cycle, during which the ARM7TDMI-S core requests a transfer to or 
from an address which is either one word, or one halfword greater than the 
address used in the preceding cycle

• an internal cycle, during which the ARM7TDMI-S core does not require a 
transfer because it is performing an internal function, and no useful prefetching 
can be performed at the same time

• a coprocessor register transfer cycle, during which the ARM7TDMI-S core uses 
the data bus to communicate with a coprocessor, but does not require any action 
by the memory system.

3.3.1 Nonsequential cycles

A nonsequential cycle is the simplest form of an ARM7TDMI-S bus cycle, and occurs 
when the ARM7TDMI-S requests a transfer to or from an address which is unrelated to 
the address used in the preceding cycle. The memory controller must initiate a memory 
access to satisfy this request.

The address class signals and the TRANS[1:0] = N cycle are broadcast on the bus. At 
the end of the next bus cycle the data is transferred between the CPU and the memory. 
This is illustrated in Figure 3-2.

Figure 3-2 Nonsequential memory cycle
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N cycle
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The ARM7TDMI-S can perform back to back, nonsequential memory cycles. This 
happens, for example, when an STR instruction is executed, as shown in Figure 3-3. If 
you are designing a memory controller for the ARM7TDMI-S, and your memory 
system is unable to cope with this case, use the CLKEN signal to extend the bus cycle 
to allow sufficient cycles for the memory system. See Use of CLKEN to control bus 
cycles on page 3-17.

Figure 3-3 Back to back memory cycles

3.3.2 Sequential cycles

Sequential cycles are used to perform burst transfers on the bus. This information can 
be used to optimize the design of a memory controller interfacing to a burst memory 
device, such as a DRAM.

During a sequential cycle, the ARM7TDMI-S requests a memory location which is part 
of a sequential burst. If this is the first cycle in the burst, the address may be the same 
as the previous internal cycle. Otherwise the address is incremented from the previous 
cycle:

• for a burst of word accesses, the address is incremented by 4 bytes

• for a burst of halfword access, the address is incremented by 2 bytes. 

Bursts of byte accesses are not possible.
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A burst always starts with an N cycle, or a merged I-S cycle (see Merged I-S cycles on 
page 3-8), and continues with S cycles. A burst comprises transfers of the same type. 
The ADDR[31:0] signal increments during the burst. The other address class signals 
are unaffected by a burst. 

The types of bursts are shown in Table 3-2.

All accesses in a burst are of the same width, direction and protection type. For more 
details, see Addressing signals on page 3-10.

An example of a burst access is shown in Figure 3-4.

Figure 3-4 Sequential access cycles

Table 3-2 Burst types

 Burst type Address increment Cause

Word read 4 bytes ARM7TDMI-S code fetches, or LDM instruction

Word write 4 bytes STM instruction

Halfword read 2 bytes Thumb code fetches

CLK
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TRANS[1:0]

WDATA[31:0]
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RDATA[31:0]
(Read)

Address Address + 4

N cycle S cycle

Write
data 1
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Read
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Read
data 2

N cycle S cycle
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3.3.3 Internal cycles

During an internal cycle, the ARM7TDMI-S does not require a memory access, as an 
internal function is being performed, and no useful prefetching can be performed at the 
same time. 

Where possible the ARM7TDMI-S broadcasts the address for the next access, so that 
decode can start, but the memory controller must not commit to a memory access. This 
is further described in Merged I-S cycles, below.

3.3.4 Merged I-S cycles

Where possible, the ARM7TDMI-S performs an optimization on the bus to allow extra 
time for memory decode. When this happens, the address of the next memory cycle is 
broadcast during an internal cycle on this bus. This allows the memory controller to 
decode the address, but it must not initiate a memory access during this cycle. In a 
merged I-S cycle, the next cycle is a sequential cycle to the same memory location. This 
commits to the access, and the memory controller must initiate the memory access. This 
is shown in Figure 3-5.

Figure 3-5 Merged I-S cycle

Note

When designing a memory controller, make sure that the design will also work when an 
I cycle is followed by an N cycle to a different address. This sequence may occur during 
exceptions, or during writes to the program counter. It is essential that the memory 
controller does not commit to the memory cycle during an I cycle.
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3.3.5 Coprocessor register transfer cycles

During a coprocessor register transfer cycle, the ARM7TDMI-S uses the data buses to 
transfer data to or from a coprocessor. A memory cycle is not required and the memory 
controller does not initiate a transaction.

The coprocessor interface is described in Chapter 4 Coprocessor Interface.
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3.4 Addressing signals

The address class signals are:

• ADDR[31:0]
• WRITE
• SIZE[1:0]  on page 3-11

• PROT[1:0] on page 3-11

• LOCK  on page 3-12

• CPTBIT  on page 3-12.

These are described below.

3.4.1 ADDR[31:0]

ADDR[31:0] is the 32-bit address bus which specifies the address for the transfer. All 
addresses are byte addresses, so a burst of word accesses results in the address bus 
incrementing by 4 for each cycle.

The address bus provides a 4GB of linear addressing space. When a word access is 
signalled the memory system should ignore the bottom two bits, ADDR[1:0] , and when 
a halfword access is signalled the memory system should ignore the bottom bit, 
ADDR[0] .

3.4.2 WRITE

WRITE specifies the direction of the transfer. WRITE indicates an ARM7TDMI-S 
write cycle when HIGH, and an ARM7TDMI-S read cycle when LOW. A burst of 
S cycles is always either a read burst, or a write burst, because the direction cannot be 
changed in the middle of a burst.
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3.4.3 SIZE[1:0]

The SIZE[1:0] bus encodes the size of the transfer. The ARM7TDMI-S can transfer 
word, halfword, and byte quantities. This is encoded on SIZE[1:0]  as shown in Table 
3-3.

The size of transfer does not change during a burst of S cycles.

Note

A writable memory system for the ARM7TDMI-S must have individual byte write 
enables. Both the C Compiler and the ARM debug tool chain (for example, Multi-ICE) 
assume that arbitrary bytes in the memory can be written. If individual byte write 
capability is not provided, it may not be possible to use either of these capabilities.

3.4.4 PROT[1:0]

The PROT[1:0] bus encodes information about the transfer. A memory management 
unit uses this signal to determine whether an access is from a privileged mode, and 
whether it is an opcode or a data fetch. This signals can therefore be used to implement 
an access permission scheme. The encoding of PROT[1:0] is as shown in Table 3-4.

Table 3-3 Transfer widths

SIZE[1:0] Transfer width

00 Byte

01 Halfword

10 Word

11 Reserved

Table 3-4 PROT encoding

PROT[1:0] Mode Opcode/data 

00 User Opcode

01 User Data

10 Privileged Opcode

11 Privileged Data
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3.4.5 LOCK

LOCK  is used to indicate to an arbiter that an atomic operation is being performed on 
the bus. LOCK  is normally LOW, but is set HIGH to indicate that a SWP or SWPB 
instruction is being performed. These instructions perform an atomic read/write 
operation, and can be used to implement semaphores.

3.4.6 CPTBIT

CPTBIT  is used to indicate the operating state of the ARM7TDMI-S. When in:

• ARM state, the CPTBIT  signal is LOW

• Thumb state, the CPTBIT  signal is HIGH.
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3.5 Data timed signals

The data timed signals are:

• WDATA[31:0]
• RDATA[31:0]
• ABORT

These are described below.

3.5.1 WDATA[31:0]

WDATA[31:0]  is the write data bus. All data written out from the ARM7TDMI-S is 
broadcast on this bus. Data transfers from the ARM7TDMI-S to a coprocessor also use 
this bus during C cycles. In normal circumstances, a memory system must sample the 
WDATA[31:0] bus on the rising edge of CLK  at the end of a write bus cycle. The value 
on WDATA[31:0]  is valid only during write cycles.

3.5.2 RDATA[31:0]

RDATA[31:0]  is the read data bus, and is used by the ARM7TDMI-S to fetch both 
opcodes and data. The RDATA[31:0]  signal is sampled on the rising edge of CLK  at 
the end of the bus cycle. RDATA[31:0]  is also used during C cycles to transfer data 
from a coprocessor to the ARM7TDMI-S.

3.5.3 ABORT

ABORT  indicates that a memory transaction failed to complete successfully. ABORT  
is sampled at the end of the bus cycle during active memory cycles (S cycles and N 
cycles).

If ABORT  is asserted on a data access, it causes the ARM7TDMI-S to take the data 
abort trap. If it is asserted on an opcode fetch, the abort is tracked down the pipeline, 
and the prefetch abort trap is taken if the instruction is executed.

ABORT  can be used by a memory management system to implement, for example, a 
basic memory protection scheme, or a demand-paged virtual memory system. 

For more details about aborts, see Abort on page 2-19.
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3.5.4 Byte and halfword accesses

The ARM7TDMI-S indicates the size of a transfer using the SIZE[1:0]  signals. These 
are encoded as shown in Table 3-5.

All writable memory in an ARM7TDMI-S based system should support the writing of 
individual bytes to allow the use of the C Compiler and the ARM debug tool chain (for 
example, Multi-ICE).

The address produced by the ARM7TDMI-S is always a byte address. However, the 
memory system should ignore the bottom bits of the address. The significant address 
bits are listed in Table 3-6.

When a halfword or byte read is performed, a 32-bit memory system can return the 
complete 32-bit word, and the ARM7TDMI-S extracts the valid halfword or byte field 
from it. The fields extracted depend on the state of the CFGBIGEND  signal, which 
determines the endianness of the system. See Memory formats on page 2-4.

Table 3-5 Transfer size encoding

SIZE[1:0] Transfer width

00 Byte

01 Halfword

10 Word

11 Reserved

Table 3-6 Significant address bits

SIZE[1:0] Width Significant address bits

00 Byte ADDR[31:0]

01 Halfword ADDR[31:1]

10 Word ADDR[31:2]
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The fields extracted by the ARM7TDMI-S are as shown in Table 3-7:

When connecting 8-bit to 16-bit memory systems to the ARM7TDMI-S, make sure that 
the data is presented to the correct byte lanes on the ARM7TDMI-S as shown in Table 
3-8 and Table 3-9 below.

Writes

When the ARM7TDMI-S performs a byte or halfword write, the data being written is 
replicated across the bus, as illustrated in Figure 3-6 on page 3-16. The memory system 
can use the most convenient copy of the data. A writable memory system must be 
capable of performing a write to any single byte in the memory system. This capability 
is required by the ARM C Compiler and the Debug tool chain.

Table 3-7 Word accesses

 SIZE[1:0] ADDR[1:0]
Little-endian
CFGBIGEND = 0

Big-endian
CFGBIGEND = 1

10 XX RDATA[31:0] RDATA[31:0]

Table 3-8 Halfword accesses

 SIZE[1:0] ADDR[1:0]
Little-endian
CFGBIGEND = 0

Big-endian
CFGBIGEND = 1

01 0X RDATA[15:0] RDATA[31:16]

01 1X RDATA[31:16] RDATA[15:0]

Table 3-9 Byte accesses

SIZE[1:0] ADDR[1:0]
Little-endian
CFGBIGEND = 0

Big-endian
CFGBIGEND = 1

00 00 RDATA[7:0] RDATA[31:24]

00 01 RDATA[15:8] RDATA[23:16]

00 10 RDATA[23:16] RDATA[15:8]

00 11 RDATA[31:24] RDATA[7:0]
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Figure 3-6 Data replication
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3.6 Use of CLKEN to control bus cycles

The pipelined nature of the ARM7TDMI-S bus interface means that there is a 
distinction between clock cycles and bus cycles. CLKEN  can be used to stretch a bus 
cycle, so that it lasts for many clock cycles. The CLKEN  input extends the timing of 
bus cycles in increments of complete CLK  cycles:

• when CLKEN  is HIGH on the rising edge of CLK , a bus cycle completes

• when CLKEN  is sampled LOW, the bus cycle is extended. 

In the pipeline, the address class signals and the memory request signals are ahead of 
the data transfer by one bus cycle. In a system using CLKEN  this may be more than 
one CLK  cycle. This is illustrated in Figure 3-7, which shows CLKEN  being used to 
extend a nonsequential cycle. In the example, the first N cycle is followed by another 
N cycle to an unrelated address, and the address for the second access is broadcast 
before the first access completes.

Figure 3-7 Use of CLKEN

Note

When designing a memory controller, you are strongly advised to sample the values of 
TRANS[1:0] and the address class signals only when CLKEN  is HIGH. This will 
ensure that the state of the memory controller is not accidentally updated during a bus 
cycle.
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Chapter 4
Coprocessor Interface

This chapter describes the ARM7TDMI-S coprocessor interface:

• About coprocessors on page 4-2

• Coprocessor interface signals on page 4-4

• Pipeline following signals on page 4-5

• Coprocessor interface handshaking on page 4-6

• Connecting coprocessors on page 4-12

• If you are not using an external coprocessor on page 4-14

• Undefined instructions on page 4-15

• Privileged instructions on page 4-16.
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4.1 About coprocessors

The ARM7TDMI-S instruction set allows specialized additional instructions to be 
implemented using coprocessors. These are separate processing units which are tightly 
coupled to the ARM7TDMI-S processor. A typical coprocessor contains:

• an instruction pipeline

• instruction decoding logic

• handshake logic

• a register bank

• special processing logic, with its own data path.

A coprocessor is connected to the same data bus as the ARM7TDMI-S processor in the 
system, and tracks the pipeline in the ARM7TDMI-S processor. This means that the 
coprocessor can decode the instructions in the instruction stream, and execute those that 
it supports. Each instruction progresses down both the ARM7TDMI-S pipeline and the 
coprocessor pipeline at the same time. 

The execution of instructions is shared between the ARM7TDMI-S and the 
coprocessor. 

The ARM7TDMI-S:

1. Evaluates the condition codes to determine whether the instruction should be 
executed by the coprocessor, and signals this to any coprocessors in the system 
(using CPnCPI).

2. Generates any addresses that are required by the instruction, including 
prefetching the next instruction to refill the pipeline.

3. Takes the undefined instruction trap if no coprocessor accepts the instruction.

The coprocessor:

1. Decodes instructions to determine whether it can accept the instruction.

2. Indicates whether it can accept the instruction (by signalling on CPA and CPB).

3. Fetches any values required from its own register bank.

4. Performs the operation required by the instruction.

If a coprocessor cannot execute an instruction, the instruction takes the undefined 
instruction trap. You can choose whether to emulate coprocessor functions in software, 
or to design a dedicated coprocessor.



Coprocessor Interface

ARM DDI 0084E © Copyright ARM Limited 1999. All rights reserved. 4-3

4.1.1 Coprocessor availability

Up to 16 coprocessors can be connected into a system, each with a unique coprocessor 
ID number to identify it. The ARM7TDMI-S contains two internal coprocessors:

• CP14 is the communications channel coprocessor

• CP15 is the system control coprocessor for cache and MMU functions.

External coprocessors, therefore, cannot be assigned to coprocessor numbers 14 or 15. 
Other coprocessor numbers have also been reserved by ARM. Coprocessor availability 
is listed in Table 4-1.

If you intend to design a coprocessor send an email with coprocessor  in the subject 
line to info@arm.com  for up-to-date information on which coprocessor numbers have 
been allocated.

Table 4-1 Coprocessor availability

Coprocessor
number

Allocation

15 System control

14 Debug controller

13:8 Reserved

7:4 Available to users

3:0 Reserved
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4.2 Coprocessor interface signals

The signals used to interface the ARM7TDMI-S to a coprocessor are grouped into four 
categories.

The clock and clock control signals are:

• CLK
• CLKEN
• nRESET

The pipeline following signals are:

• CPnMREQ
• CPSEQ
• CPnTRANS
• CPnOPC
• CPTBIT

The handshake signals are:

• CPnCPI
• CPA
• CPB

The data signals are:

• WDATA[31:0]
• RDATA[31:0]

These signals and their use are discussed in the rest of this chapter.
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4.3 Pipeline following signals

Every coprocessor in the system must contain a pipeline follower to track the 
instructions executing in the ARM7TDMI-S pipeline. The coprocessors connect to the 
ARM7TDMI-S input data bus, RDATA[31:0] , over which instructions are fetched, and 
to CLK  and CLKEN .

It is essential that the two pipelines remain in step at all times. When designing a 
pipeline follower for a coprocessor, the following rules must be observed:

• At reset (nRESET LOW), the pipeline must either be marked as invalid, or filled 
with instructions which will not decode to valid instructions for that coprocessor.

• The coprocessor state must only change when CLKEN  is HIGH (except for 
reset).

• An instruction must be loaded into the pipeline on the rising edge of CLK , and 
only when CPnOPC, CPnMREQ and CPTBIT  were all LOW in the previous 
bus cycle.

These conditions indicate that this cycle is an ARM7TDMI-S state opcode fetch, 
so the new opcode must be sampled into the pipeline.

• The pipeline should be advanced on the rising edge of CLK  when CPnOPC, 
CPnMREQ and CPTBIT  are all LOW in the current bus cycle.

These conditions indicate that the current instruction is about to complete 
execution, because the first action of any instruction performing an instruction 
fetch is to refill the pipeline.

Any instructions that are flushed from the ARM7TDMI-S pipeline will never signal on 
CPnCPI that they have entered execute, and so they are automatically flushed from the 
coprocessor pipeline by the prefetches required to refill the pipeline.

There are no coprocessor instructions in the Thumb instruction set, and so coprocessors 
must monitor the state of the CPTBIT  signal to ensure that they do not try to decode 
pairs of Thumb instructions as ARM7TDMI-S instructions.
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4.4 Coprocessor interface handshaking

The ARM7TDMI-S and any coprocessors in the system perform a handshake using the 
following signals:

These signals are explained in more detail in Coprocessor signalling on page 4-7.

4.4.1 The coprocessor

The coprocessor decodes the instruction currently in the decode stage of its pipeline, 
and checks whether that instruction is a coprocessor instruction. A coprocessor 
instruction has a coprocessor number which matches the coprocessor ID of the 
coprocessor.

If the instruction currently in the decode stage is a coprocessor instruction:

1. The coprocessor attempts to execute the instruction.

2. The coprocessor signals back to the ARM7TDMI-S using CPA and CPB.

4.4.2 The ARM7TDMI-S

Coprocessor instructions progress down the ARM7TDMI-S pipeline in step with the 
coprocessor pipeline. A coprocessor instruction is executed if the following are true:

1. The coprocessor instruction has reached the execute stage of the pipeline. (It 
may not have if it was preceded by a branch.)

2. The instruction has passed its conditional execution tests.

3. A coprocessor in the system has signalled on CPA and CPB that it is able to 
accept the instruction.

If all these requirements are met, the ARM7TDMI-S signals by taking CPnCPI LOW, 
thereby committing the coprocessor to the execution of the coprocessor instruction.

Table 4-2 Handshaking signals

Signal Direction Meaning

CPnCPI ARM7TDMI-S to coprocessor Not coprocessor instruction

CPA Coprocessor to ARM7TDMI-S Coprocessor absent

CPB Coprocessor to ARM7TDMI-S Coprocessor busy
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4.4.3 Coprocessor signalling

The coprocessor signals as follows:

Coprocessor absent If a coprocessor cannot accept the instruction currently in decode 
it should leave CPA and CPB both HIGH.

Coprocessor present If a coprocessor can accept an instruction, and can start that 
instruction immediately, it should signal this by driving both CPA 
and CPB LOW.

Coprocessor busy (busy-wait)
If a coprocessor can accept an instruction, but is currently unable 
to process that request, it can stall the ARM7TDMI-S by asserting 
busy-wait. This is signalled by driving CPA LOW, but leaving 
CPB HIGH. When the coprocessor is ready to start executing the 
instruction it signals this by driving CPB LOW.

Figure 4-1 Coprocessor busy-wait sequence
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I Fetch
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Co-Processor
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4.4.4 Consequences of busy-waiting

A busy-waited coprocessor instruction can be interrupted. If a valid FIQ  or IRQ  occurs 
(the appropriate bit is set in the CSPR), the ARM7TDMI-S abandons the coprocessor 
instruction, and signals this by taking nCPI HIGH. A coprocessor which is capable of 
busy-waiting must monitor nCPI to detect this condition. When the ARM7TDMI-S 
abandons a coprocessor instruction, the coprocessor also abandons the instruction, and 
continues tracking the ARM7TDMI-S pipeline. 

Caution
It is essential that any action taken by the coprocessor while it is busy-waiting is 
idempotent. The actions taken by the coprocessor must not corrupt the state of the 
coprocessor, and must be repeatable with identical results. The coprocessor can only 
change its own state once the instruction has been executed.
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4.4.5 Coprocessor register transfer instructions

The coprocessor register transfer instructions, MCR and MRC, are used to transfer data 
between a register in the ARM7TDMI-S register bank and a register in the coprocessor 
register bank. An example sequence for a coprocessor register transfer is shown in 
Figure 4-2.

Figure 4-2 Coprocessor register transfer sequence
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4.4.6 Coprocessor data operations

Coprocessor data operations, CDP instructions, perform processing operations on the 
data held in the coprocessor register bank. No information is transferred between the 
ARM7TDMI-S and the coprocessor as a result of this operation. An example sequence 
is shown in Figure 4-3.

Figure 4-3 Coprocessor data operation sequence
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4.4.7 Coprocessor load and store operations

The coprocessor load and store instructions are used to transfer data between a 
coprocessor and memory. They can be used to transfer either a single word of data, or 
a number of the coprocessor registers. There is no limit to the number of words of data 
that can be transferred by a single LDC or STC instruction, but by convention no 
coprocessor should transfer more than 16 words of data in a single instruction. An 
example sequence is shown in Figure 4-4.

Note

If you transfer more than 16 words of data in a single instruction, the worst case 
interrupt latency of the ARM7TDMI-S will increase.

Figure 4-4 Coprocessor load sequence
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4.5 Connecting coprocessors

A coprocessor in an ARM7TDMI-S system needs to have 32-bit connections to:

• data from memory (instruction stream and LDC)

• write data from the ARM7TDMI-S (MCR)

• read data to the ARM7TDMI-S (MRC).

4.5.1 Connecting a single coprocessor

An example of how to connect a coprocessor into an ARM7TDMI-S system is shown 
in Figure 4-5.

Figure 4-5 Coprocessor connections
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4.5.2 Connecting multiple coprocessors

If you have multiple coprocessors in your system, connect the handshake signals as 
shown in Table 4-3.

You must also multiplex the output data from the coprocessors.

Table 4-3 Handshake signal connections

Signal Connection

CPnCPI Connect this signal to all coprocessors present in the system.

CPA and CPB The individual CPA and CPB outputs from each coprocessor must be 
ANDed together, and connected to the CPA and CPB inputs on the 
ARM7TDMI-S.
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4.6 If you are not using an external coprocessor

If you are implementing a system which does not include any external coprocessors, 
you must tie both CPA and CPB HIGH. This indicates that no external coprocessors 
are present in the system. If any coprocessor instructions are received, they will take the 
undefined instruction trap so that they can be emulated in software if required.

The coprocessor-specific outputs from the ARM7TDMI-S should be left unconnected:

• CPnMREQ
• CPSEQ
• CPnTRANS
• CPnOPC
• CPTBIT
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4.7 Undefined instructions

The ARM7TDMI-S implements full ARM Architecture v4T undefined instruction 
handling. This means that any instruction defined in the ARM Architecture Reference 
Manual as UNDEFINED, automatically causes the ARM7TDMI-S to take the undefined 
instruction trap. Any coprocessor instructions that are not accepted by a coprocessor 
also result in the ARM7TDMI-S taking the undefined instruction trap.
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4.8 Privileged instructions

The output signal CPnTRANS allows the implementation of coprocessors, or 
coprocessor instructions, that can only be accessed from privileged modes. The signal 
meanings are given in Table 4-4.

The CPnTRANS signal is sampled at the same time as the instruction, and is factored 
into the coprocessor pipeline decode stage. 

Note

If a user mode process (CPnTRANS LOW) tries to access a coprocessor instruction 
that can only be executed in a privileged mode, the coprocessor responds with CPA and 
CPB HIGH. This causes the ARM7TDMI-S to take the undefined instruction trap.

Table 4-4 PROT[1] signal meanings

CPnTRANS Meaning

LOW User mode instruction 

HIGH Privileged mode instruction
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Chapter 5
Debug Interface

This chapter describes the ARM7TDMI-S debug interface:

• Overview of the debug interface on page 5-2

• Debug systems on page 5-4

• Debug interface signals on page 5-6

• ARM7TDMI-S core clock domains on page 5-10

• Determining the core and system state on page 5-11.

This chapter also describes the ARM7TDMI-S EmbeddedICE macrocell module:

• Overview of EmbeddedICE on page 5-12

• Disabling EmbeddedICE on page 5-14

• The debug communications channel on page 5-15.



Debug Interface

5-2 © Copyright ARM Limited 1999. All rights reserved. ARM DDI 0084E

5.1 Overview of the debug interface

The ARM7TDMI-S debug interface is based on IEEE Std. 1149.1- 1990, Standard Test 
Access Port and Boundary-Scan Architecture. Please refer to this standard for an 
explanation of the terms used in this chapter and for a description of the TAP controller 
states.

The ARM7TDMI-S contains hardware extensions for advanced debugging features. 
These make it easier to develop application software, operating systems, and the 
hardware itself.

The debug extensions allow the core to be forced into debug state. In debug state, the 
core is stopped, and isolated from the rest of the system. This allows the internal state 
of the core, and the external state of the system, to be examined while all other system 
activity continues as normal. When debug has been completed, the ARM7TDMI-S 
restores the core and system state, and resumes program execution.

5.1.1 Stages of debug

A request on one of the external debug interface signals, or on an internal functional unit 
known as the EmbeddedICE macrocell, forces the ARM7TDMI-S into debug state. The 
interrupts which activate debug are:

• a breakpoint (a given instruction fetch)

• a watchpoint (a data access)

• an external debug request.

The internal state of the ARM7TDMI-S is examined via a JTAG-style serial interface, 
which allows instructions to be serially inserted into the core pipeline without using the 
external data bus. So, for example, when in debug state, a store multiple (STM) could 
be inserted into the instruction pipeline, and this would export the contents of the 
ARM7TDMI-S registers. This data can be serially shifted out without affecting the rest 
of the system. 

5.1.2 Clocks

The system and test clocks must be synchronized externally to the macrocell. The ARM 
Multi-ICE debug agent directly supports one or more cores within an ASIC design. To 
synchronize off-chip debug clocking with the ARM7TDMI-S macrocell requires a 
three-stage synchronizer. The off-chip device (for example, Multi-ICE) issues a TCK  
signal, and waits for the RTCK (Returned TCK ) signal to come back. Synchronization 
is maintained because the off-chip device does not progress to the next TCK until after 
RTCK is received. 
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Figure 5-1 shows this synchronization:

Figure 5-1 Clock synchronization
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5.2 Debug systems

The ARM7TDMI-S forms one component of a debug system that interfaces from the 
high-level debugging performed by the user to the low-level interface supported by the 
ARM7TDMI-S. Figure 5-2 shows a typical debug system.

Figure 5-2 Typical debug system

A debug system typically has three parts:

• The debug host

• The protocol converter on page 5-4

• The ARM7TDMI-S on page 5-5.

The debug host and the protocol converter are system-dependent.

5.2.1 The debug host

The debug host is a computer which is running a software debugger, such as armsd. The 
debug host allows the user to issue high level commands such as setting breakpoints or 
examining the contents of memory.

5.2.2 The protocol converter

An interface, such as an RS232, connects the debug host to the ARM7TDMI-S 
development system. The messages broadcast over this connection must be converted 
to the interface signals of the ARM7TDMI-S. The protocol converter performs the 
conversion.
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5.2.3 The ARM7TDMI-S

The ARM7TDMI-S has hardware extensions that ease debugging at the lowest level. 
The debug extensions:

• allow the user to stall the core from program execution

• examine the core internal state

• examine the state of the memory system

• resume program execution.

The major blocks of the ARM7TDMI-S are:

• The ARM7TDMI-S. This is the CPU core, with hardware support for debug.

• The EmbeddedICE macrocell. This is a set of registers and comparators used to 
generate debug exceptions (such as breakpoints). This unit is described in 
Overview of EmbeddedICE on page 5-12.

• The TAP controller. This controls the action of the scan chains via a JTAG serial 
interface.

These blocks are shown in Figure 5-3:

Figure 5-3 ARM7TDMI-S block diagram

The rest of this chapter describes the ARM7TDMI-S hardware debug extensions.
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5.3 Debug interface signals

There are three primary external signals associated with the debug interface:

• DBGBREAK  and DBGRQ are system requests for the ARM7TDMI-S to enter 
debug state

• DBGACK  is used by the ARM7TDMI-S to flag back to the system that it is in 
debug state.

5.3.1 Entry into debug state

The ARM7TDMI-S is forced into debug state following a breakpoint, watchpoint, or 
debug request.

You can use EmbeddedICE to program the conditions under which a breakpoint or 
watchpoint may occur. Alternatively, you can use external logic to monitor the address 
and data bus, and flag breakpoints and watchpoints via the DBGBREAK pin. 

The timing is the same for externally-generated breakpoints and watchpoints. Data must 
always be valid around the rising edge of CLK . When this data is an instruction to be 
breakpointed, the DBGBREAK  signal must be HIGH around the rising edge of CLK . 
Similarly, when the data is for a load or store, asserting DBGBREAK  around the rising 
edge of CLK  marks the data as watchpointed. 

When a breakpoint or watchpoint is generated, there may be a delay before the 
ARM7TDMI-S enters debug state. When it enters debug state, the DBGACK  signal is 
asserted. The timing for an externally-generated breakpoint is shown in Figure 5-4 on 
page 5-7.
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Figure 5-4 Debug state entry
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A breakpointed instruction does not cause the ARM7TDMI-S to enter debug state 
when:

• A branch, or a write to the PC, precedes the breakpointed instruction. In this 
case, when the branch is executed, the ARM7TDMI-S flushes the instruction 
pipeline, thereby cancelling the breakpoint. 

• An exception occurs, causing the ARM7TDMI-S to flush the instruction 
pipeline, and cancel the breakpoint. In normal circumstances, on exiting from an 
exception, the ARM7TDMI-S branches back to the instruction that would have 
next been executed before the exception occurred. In this case, the pipeline is 
refilled, and the breakpoint is reflagged.

Entry into debug state on watchpoint

Watchpoints occur on data accesses. A watchpoint is always taken, but the core may not 
enter debug state immediately. In all cases, the current instruction completes. If the 
current instruction is a multiword load or store (an LDM or STM), many cycles may 
elapse before the watchpoint is taken.

When a watchpoint occurs, the current instruction completes, and all changes to the core 
state are made (load data is written into the destination registers, and base write-back 
occurs).

Note

Watchpoints are similar to data aborts, the difference being that when a data abort 
occurs, although the instruction completes, the ARM7TDMI-S prevents all subsequent 
changes to the ARM7TDMI-S state. This action allows the abort handler to cure the 
cause of the abort, and the instruction to be re-executed. 

If a watchpoint occurs when an exception is pending, the core enters debug state in the 
same mode as the exception.

Entry into debug state on debug request

The ARM7TDMI-S may be forced into debug state on debug request in either of the 
following ways:

• through EmbeddedICE programming (see Programming breakpoints on 
page D-32 and Programming watchpoints on page D-34)

• by asserting the DBGRQ pin.
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When the DBGRQ pin has been asserted, the core normally enters debug state at the 
end of the current instruction. However, when the current instruction is a busy-waiting 
access to a coprocessor, the instruction terminates and the ARM7TDMI-S enters debug 
state immediately (this is similar to the action of nIRQ  and nFIQ ).

Action of the ARM7TDMI-S in debug state

When the ARM7TDMI-S enters debug state, the core forces TRANS[1:0] to indicate 
internal cycles. This action allows the rest of the memory system to ignore the 
ARM7TDMI-S and to function as normal. Because the rest of the system continues to 
operate, the ARM7TDMI-S is forced to ignore aborts and interrupts.

Caution
Do not reset the core while debugging, otherwise the debugger will lose track of the 
core.

The system should not change the CFGBIGEND  signal during debug. If 
CFGBIGEND  changes, the programmer’s view of the ARM7TDMI-S changes with 
the debugger unaware that the core has reset. Make sure, also, that nRESET is held 
stable during debug. When the system applies reset to the ARM7TDMI-S (that is, 
nRESET is driven LOW), the ARM7TDMI-S state changes with the debugger unaware 
that the core has reset.
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5.4 ARM7TDMI-S core clock domains

The ARM7TDMI-S has a single clock, CLK , that is qualified by two clock enables:

• CLKEN controls access to the memory system

• DBGTCKEN  controls debug operations.

During normal operation, CLKEN conditions CLK to clock the core. When the 
ARM7TDMI-S is in debug state, DBGTCKEN  conditions CLK to clock the core.
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5.5 Determining the core and system state

When the ARM7TDMI-S is in debug state, you can examine the core and system state 
by forcing the load and store multiples into the instruction pipeline.

Before you can examine the core and system state, the debugger must determine 
whether the processor entered debug from Thumb state or ARM state, by examining 
bit 4 of the EmbeddedICE debug status register. When bit 4 is HIGH, the core has 
entered debug from Thumb state.

For more details about determining the core state, see Determining the core and system 
state on page D-15.



Debug Interface

5-12 © Copyright ARM Limited 1999. All rights reserved. ARM DDI 0084E

5.6 Overview of EmbeddedICE

The ARM7TDMI-S EmbeddedICE macrocell module provides integrated on-chip 
debug support for the ARM7TDMI-S core.

EmbeddedICE is programmed serially using the ARM7TDMI-S TAP controller. Figure 
5-5 illustrates the relationship between the core, EmbeddedICE, and the TAP controller, 
showing only the signals that are pertinent to EmbeddedICE. 

Figure 5-5 The ARM7TDMI-S, TAP controller and EmbeddedICE
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You can program one or both watchpoint units to halt the execution of instructions by 
the core. Execution halts when the values programmed into EmbeddedICE match the 
values currently appearing on the address bus, data bus, and various control signals.

Note

You can mask any bit so that its value does not affect the comparison. 

Each watchpoint unit can be configured to be either a watchpoint (monitoring data 
accesses) or a breakpoint (monitoring instruction fetches). Watchpoints and breakpoints 
can be data-dependent.
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5.7 Disabling EmbeddedICE

You can disable EmbeddedICE by setting the DBGEN input LOW.

Caution
Hard wiring the DBGEN input LOW permanently disables debug access.

When DBGEN is LOW, it inhibits DBGBREAK  and DBGRQ to the core, and 
DBGACK  from the ARM7TDMI-S will always be LOW.
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5.8 The debug communications channel

The ARM7TDMI-S EmbeddedICE unit contains a communications channel for passing 
information between the target and the host debugger. This is implemented as 
coprocessor 14.

The communications channel comprises:

• a 32-bit comms data read register 

• a 32-bit wide comms data write register

• a 6-bit comms control register for synchronized handshaking between the 
processor and the asynchronous debugger. 

These registers are located in fixed locations in the EmbeddedICE unit register map (as 
shown in Figure D-5 on page D-28) and are accessed from the processor via MCR and 
MRC instructions to coprocessor 14.

5.8.1 Debug comms channel registers

The debug comms control register is read only. It controls synchronized handshaking 
between the processor and the debugger. The debug comms control register is shown in 
Figure 5-6. 

Figure 5-6 Debug comms control register

The function of each register bit is described below:

Bits 31:28 contain a fixed pattern that denotes the EmbeddedICE version 
number (in this case 0001).

Bits 27:2 are reserved.

Bit 1 denotes whether the comms data write register is available (from 
the viewpoint of the processor).
If, from the point of view of the processor, the comms data write 
register is free (W=0), new data may be written.
If the register is not free (W=1), the processor must poll until 
W=0. 
From the point of view of the debugger, when W=1, some new 
data has been written that may then be scanned out.

31 30 29 28 27:2 1 0

0 0 1 0 W R
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Bit 0 denotes whether there is new data in the comms data read register.
If, from the point of view of the processor, R=1, there is some new 
data which may be read using an MRC instruction.
From the point of view of the debugger, if R=0, the comms data 
read register is free, and new data may be placed there through the 
scan chain. If R=1, this denotes that data previously placed there 
through the scan chain has not been collected by the processor, 
and so the debugger must wait.

From the point of view of the debugger, the registers are accessed via the scan chain in 
the usual way. From the point of view of the processor, these registers are accessed via 
coprocessor register transfer instructions.

You should use the following instructions:

MRC CP14, 0, Rd, C0, C0

This returns the debug comms control register into Rd.

MCR CP14, 0, Rn, C1, C0

This writes the value in Rn to the comms data write register.

MRC CP14, 0, Rd, C1, C0

This returns the debug data read register into Rd.

Because the Thumb instruction set does not contain coprocessor instructions, you are 
advised to access this data via SWI instructions when in Thumb state.

5.8.2 Communications via the comms channel

Messages can be sent and received via the comms channel.

Sending a message to the debugger

When the processor wishes to send a message to the debugger, it must check the comms 
data write register is free for use by finding out whether the W bit of the debug comms 
control register is clear.

The processor reads the debug comms control register to check status of the W bit.

• If W bit is clear, the comms data write register is clear.

• If the W bit is set, previously written data has not been read by the debugger. The 
processor must continue to poll the control register until the W bit is clear.
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When the W bit is clear, a message is written by a register transfer to coprocessor 14. 
As the data transfer occurs from the processor to the comms data write register, the W 
bit is set in the debug comms control register. 

The debugger sees both the R and W bits when it polls the debug comms control register 
through the JTAG interface. When the debugger sees that the W bit is set, it can read 
the comms data write register, and scan the data out. The action of reading this data 
register clears the debug comms control register W bit. At this point, the 
communications process may begin again.

Receiving a message from the debugger

Transferring a message from the debugger to the processor is similar to sending a 
message to the debugger. In this case, the debugger polls the R bit of the debug comms 
control register. 

• If the R bit is LOW, the comms data read register is free, and data can be placed 
there for the processor to read. 

• If the R bit is set, previously deposited data has not yet been collected, so the 
debugger must wait.

When the comms data read register is free, data is written there via the JTAG interface. 
The action of this write sets the R bit in the debug comms control register. 

The processor polls the debug comms control register. If the R bit is set, there is data 
that can be read via an MRC instruction to coprocessor 14. The action of this load clears 
the R bit in the debug comms control register. When the debugger polls this register and 
sees that the R bit is clear, the data has been taken, and the process may now be repeated.
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Chapter 6
Instruction Cycle Timings

This chapter gives the ARM7TDMI-S instruction cycle timings:

• Introduction to instruction cycle timings on page 6-3

• Instruction cycle count summary on page 6-5

• Branch and ARM branch with link on page 6-7

• Thumb branch with link on page 6-8

• Branch and exchange on page 6-9

• Data operations on page 6-10

• Multiply and multiply accumulate on page 6-12

• Load register on page 6-14

• Store register on page 6-16

• Load multiple registers on page 6-17

• Store multiple registers on page 6-19

• Data swap on page 6-20

• Software interrupt and exception entry on page 6-21

• Coprocessor data processing operation on page 6-22

• Load coprocessor register (from memory to coprocessor) on page 6-23

• Store coprocessor register (from coprocessor to memory) on page 6-25
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• Coprocessor register transfer (move from coprocessor to ARM register) on 
page 6-27

• Coprocessor register transfer (move from ARM register to coprocessor) on 
page 6-28

• Undefined instructions and coprocessor absent on page 6-29

• Unexecuted instructions on page 6-30.



Instruction Cycle Timings

ARM DDI 0084E © Copyright ARM Limited 1999. All rights reserved. 6-3

6.1 Introduction to instruction cycle timings

The TRANS[1:0] signals predict the type of the next cycle. These signals are pipelined 
in the cycle before the one to which they apply, and are shown as such in the following 
tables. 

In the tables in this chapter, the following signals (which also appear ahead of the cycle) 
are shown in the cycle to which they apply:

• Address is ADDR[31:0] registered to the cycle to which they apply

• Lock is LOCK registered to the cycle to which it applies

• Size is SIZE[1:0] registered to the cycle to which they apply

• Write is WRITE registered to the cycle to which it applies

• Prot1 and Prot0 are PROT[1:0] registered to the cycle to which they apply

• Tbit is CPTBIT  registered to the cycle to which it applies.

The address is incremented for prefetching instructions in most cases. The increment 
varies with the instruction length:

• 4 bytes in ARM state

• 2 bytes in Thumb state.

Note

The letter i is used to indicate the instruction lengths.

Size indicates the width of the transfer:

• w (word) represents a 32-bit data access, or ARM opcode fetch

• h (halfword) represents a 16-bit data access, or Thumb opcode fetch

• b (byte) represents an 8-bit data access.

CPA and CPB are pipelined inputs, and are shown as sampled by the ARM7TDMI-S. 
They are therefore shown in the tables the cycle after they have been driven by the 
coprocessor.
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Transaction types are shown in Table 6-1.

Note

All cycle counts in this chapter assume zero-wait-state memory access. In a system 
where CLKEN  is used to add wait states, the cycle counts must be adjusted 
accordingly.

Table 6-1 Transaction types

TRANS[1:0] Transaction type Description

00 I cycle Internal (address-only) next cycle

01 C cycle Coprocessor transfer next cycle

10 N cycle Memory access to next address is nonsequential

11 S cycle Memory access to next address is sequential
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6.2 Instruction cycle count summary

In the pipelined architecture of the ARM7TDMI-S, while one instruction is being 
fetched, the previous instruction is being decoded, and the one prior to that is being 
executed. Table 6-2 shows the number of cycles required by an instruction, once that 
instruction reaches the execute stage.

The number of cycles for a routine can be calculated from the figures in Table 6-2. 
These figures assume execution of the instruction, unexecuted instructions take one 
cycle.

In the table:

n is the number of words transferred.

m is 1 if bits [32:8] of the multiplier operand are all zero or one.

is 2 if bits [32:16] of the multiplier operand are all zero or one.

is 3 if bits [31:24] of the multiplier operand are all zero or one.

is 4 otherwise.

b is the number of cycles spent in the coprocessor busy-wait loop (which 
may be zero or more).

When the condition is not met, all the instructions take one S-cycle.

Table 6-2 Instruction cycle counts

Instruction Qualifier Cycle count

Any unexecuted Condition codes fail +S

Data processing Single-cycle +S

Data processing Register-specified shift +I +S

Data processing R15 destination +N +2S

Data processing R15, register-specified shift +I +N +2S

MUL +(m)I +S

MLA +I +(m)I +S

MULL +(m)I +I +S

MLAL +I +(m)I +I +S

B, BL +N +2S

LDR Non-R15 destination +N +I +S
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The cycle types N, S, I, and C are defined in Table 6-1 on page 6-4.

LDR R15 destination +N +I +N +2S

STR +N +N

SWP +N +N +I +S

LDM Non-R15 destination +N +(n–1)S +I +S

LDM R15 destination +N +(n–1)S +I +N +2S

STM +N +(n–1)S +I +N

MSR, MRS +S

SWI, trap +N +2S

CDP +(b)I +S

MCR +(b)I +C +N

MRC +(b)I +C +I +S

LDC, STC +(b)I +N +(n – 1)S +N

Table 6-2 Instruction cycle counts (continued)

Instruction Qualifier Cycle count
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6.3 Branch and ARM branch with link

Any ARM or Thumb branch, and an ARM branch with link operation takes three 
cycles:

1. During the first cycle, a branch instruction calculates the branch destination 
while performing a prefetch from the current PC. This prefetch is done in all 
cases because, by the time the decision to take the branch has been reached, it is 
already too late to prevent the prefetch. 

2. During the second cycle, the ARM7TDMI-S performs a fetch from the branch 
destination. The return address is stored in r14 if the link bit is set. 

3. During the third cycle, the ARM7TDMI-S performs a fetch from the destination 
+ i, refilling the instruction pipeline. When the instruction is a branch with link, 
r14 is modified (4 is subtracted from it) to simplify return to MOV PC,R14. 
This modification ensures subroutines of the type STM..{R14} LDM..{PC}  
work correctly.

Table 6-3 shows the cycle timings, where:

pc is the address of the branch instruction

pc’ is an address calculated by the ARM7TDMI-S

(pc’) are the contents of that address.

Note

This data applies only to branches in ARM and Thumb states, and to branch with link 
in ARM state.

Table 6-3 Branch instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0

1 pc+2i w/h 0 (pc + 2i) N cycle 0

2 pc’ w’/h’ 0 (pc’) S cycle 0

3 pc’+i w’/h’ 0 (pc’ + i) S cycle 0

pc’+2i w’/h’
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6.4 Thumb branch with link

A Thumb Branch with Link (BL) operation comprises two consecutive Thumb 
instructions, and takes four cycles:

1. The first instruction acts as a simple data operation. It takes a single cycle to add 
the PC to the upper part of the offset, and stores the result in r14 (LR).

2. The second instruction acts similarly to the ARM BL instruction over three 
cycles: 

• During the first cycle, the ARM7TDMI-S calculates the final branch 
destination while performing a prefetch from the current PC.

• During the second cycle, the ARM7TDMI-S performs a fetch from the 
branch destination. The return address is stored in r14.

• During the third cycle, the ARM7TDMI-S performs a fetch from the 
destination +2, refills the instruction pipeline, and modifies r14 
(subtracting 2) to simplify the return to MOV PC, R14 . This modification 
ensures that subroutines of the type PUSH {..,LR} ; POP {..,PC}  
work correctly.

Table 6-4 shows the cycle timings of the complete operation.

Note

PC is the address of the first instruction of the operation.

Thumb BL operations are explained in detail in the ARM Architecture Reference 
Manual.

Table 6-4 Thumb long branch with link

Cycle Address Size Write Data TRANS[1:0] Prot0

1 pc + 4 h 0 (pc + 4) S cycle 0

2 pc + 6 h 0 (pc + 6) N cycle 0

3 pc’ h 0 (pc’) S cycle 0

4 pc’ + 2 h 0 (pc’ + 2) S cycle 0

pc’ + 4



Instruction Cycle Timings

ARM DDI 0084E © Copyright ARM Limited 1999. All rights reserved. 6-9

6.5 Branch and exchange

A Branch and Exchange (BX) operation takes three cycles, and is similar to a Branch:

1. During the first cycle, the ARM7TDMI-S extracts the branch destination and the 
new core state from the register source, while performing a prefetch from the 
current PC. This prefetch is performed in all cases, because by the time the 
decision to take the branch has been reached, it is already too late to prevent the 
prefetch.

2. During the second cycle, the ARM7TDMI-S performs a fetch from the branch 
destination using the new instruction width, dependent on the state that has been 
selected.

3. During the third cycle, the ARM7TDMI-S performs a fetch from the destination 
+2 or +4 dependent on the new specified state, refilling the instruction pipeline.

Table 6-5 shows the cycle timings.

Note

i and i’  represent the instruction widths before and after the BX respectively.

In ARM state, Size is 2, and in Thumb state Size is 1. When changing from Thumb to 
ARM state, i equals 1, and i’  equals 2.

t and t’ represent the states of the Tbit before and after the BX respectively. In ARM 
state, Tbit is 0, and in Thumb state Tbit is 1. When changing from ARM to Thumb state, 
t equals 0, and t’  equals 1.

Table 6-5 Branch and exchange instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0 Tbit

1 pc + 2i w/h 0 (pc + 2i) N cycle 0 t

2 pc’ w’/h’ 0 (pc’) S cycle 0 t’

3 pc’+ i’ w’/h’ 0 (pc’+i’) S cycle 0 t’

pc’ + 2i’
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6.6 Data operations

A data operation executes in a single data path cycle except where the shift is 
determined by the contents of a register. The ARM7TDMI-S reads a first register onto 
the A bus, and a second register, or the immediate field, onto the B bus.

The ALU combines the A bus source and the shifted B bus source according to the 
operation specified in the instruction. The ARM7TDMI-S writes the result (when 
required) into the destination register. (Compares and tests do not produce results, only 
the ALU status flags are affected.) 

An instruction prefetch occurs at the same time as the data operation, and the PC is 
incremented.

When a register specifies the shift length, an additional data path cycle occurs before 
the data operation to copy the bottom 8 bits of that register into a holding latch in the 
barrel shifter. The instruction prefetch occurs during this first cycle. The operation cycle 
is internal (it does not request memory). As the address remains stable through both 
cycles, the memory manager can merge this internal cycle with the following sequential 
access.

The PC may be one or more of the register operands. When the PC is the destination, 
external bus activity may be affected. When the ARM7TDMI-S writes the result to the 
PC, the contents of the instruction pipeline are invalidated, and the ARM7TDMI-S 
takes the address for the next instruction prefetch from the ALU rather than the address 
incrementer. The ARM7TDMI-S refills the instruction pipeline before any further 
execution takes place. During this time exceptions are locked out. 

PSR transfer operations exhibit the same timing characteristics as the data operations 
except that the PC is never used as a source or destination register.
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The data operation timing cycles are shown in Table 6-6.

Note

Shifted register with destination equals PC is not possible in Thumb state.

Table 6-6 Data operation instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0

normal 1 pc+2i w/h 0 (pc+2i) S cycle 0

pc+3i

dest=pc 1 pc+2i w/h 0 (pc+2i) N cycle 0

2 pc’ w/h 0 (pc’) S cycle 0

3 pc’+i w/h 0 (pc’+i) S cycle 0

pc’+2i

shift(Rs) 1 pc+2i w/h 0 (pc+2i) I cycle 0

2 pc+3i w/h 0 - S cycle 1

pc+3i

shift(Rs) 1 pc+8 w 0 (pc+8) I cycle 0

dest=pc 2 pc+12 w 0 - N cycle 1

3 pc’ w 0 (pc’) S cycle 0

4 pc’+4 w 0 (pc’+4) S cycle 0

pc’+8
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6.7 Multiply and multiply accumulate

The multiply instructions make use of special hardware that implements integer 
multiplication with early termination. All cycles except the first are internal.

The cycle timings are shown in Table 6-7 to Table 6-10, in which m is the number of 
cycles required by the multiplication algorithm (see Instruction cycle count summary 
on page 6-5).

Table 6-7 Multiply instruction cycle operations

Cycle Address Write Size Data TRANS[1:0] Prot0

1 pc+2i 0 w/h (pc+2i) I cycle 0

2 pc+3i 0 w/h - I cycle 1

• pc+3i 0 w/h - I cycle 1

m pc+3i 0 w/h - I cycle 1

m+1 pc+3i 0 w/h - S cycle 1

 pc+3i

Table 6-8 Multiply-accumulate instruction cycle operations

Cycle Address Write Size Data TRANS[1:0] Prot0

1 pc+2i 0 w/h (pc+2i) I cycle 0

2 pc+2i 0 w/h - I cycle 1

• pc+3i 0 w/h - I cycle 1

m pc+3i 0 w/h - I cycle 1

m+1 pc+3i 0 w/h - I cycle 1

m+2 pc+3i 0 w/h - S cycle 1

 pc+3i
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Note

Multiply long is available only in ARM state.

Note

Multiply-accumulate long is available only in ARM state.

Table 6-9 Multiply long instruction cycle operations

Cycle Address Write Size Data TRANS[1:0] Prot0

1 pc+8 0 w (pc+8) I cycle 0

2 pc+12 0 w - I cycle 1

• pc+12 0 w - I cycle 1

m pc+12 0 w - I cycle 1

m+1 pc+12 0 w - I cycle 1

m+2 pc+12 0 w - S cycle 1

 pc+12

Table 6-10 Multiply-accumulate long instruction cycle operations

Cycle Address Write Size Data TRANS[1:0] Prot0

1 pc+8 0 w (pc+8) I cycle 0

2 pc+8 0 w - I cycle 1

• pc+12 0 w - I cycle 1

m pc+12 0 w - I cycle 1

m+1 pc+12 0 w - I cycle 1

m+2 pc+12 0 w - I cycle 1

m+3 pc+12 0 w - S cycle 1

 pc+12
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6.8 Load register

A load register instruction takes a variable number of cycles:

1. During the first cycle, the ARM7TDMI-S calculates the address to be loaded. 

2. During the second cycle, the ARM7TDMI-S fetches the data from memory, and 
performs the base register modification (if required). 

3. During the third cycle, the ARM7TDMI-S transfers the data to the destination 
register. (External memory is not used.) Normally, the ARM7TDMI-S merges 
this third cycle with the next prefetch to form one memory N-cycle.

The load register cycle timings are shown in Table 6-11, where:

b, h and w are byte, halfword, and word as defined in Table D-5 on page D-30.

s represents current supervisor-mode-dependent value.

u is either 0, when the force translation bit is specified in the instruction 
(LDRT), or s at all other times.

Table 6-11 Load register instruction cycle operations

 Cycle Address Size Write Data TRANS[1:0] Prot0 Prot1

 normal 1 pc+2i w/h 0 (pc+2i) N cycle 0 s

2 pc’ w/h/b 0 (pc’) I cycle 1 u/s

3 pc+3i w/h 0 - S cycle 1 s

pc+3i

dest=pc 1 pc+8 w 0 (pc+8) N cycle 0 s

2 da w/h/b 0 pc’ I cycle 1 u/s

3 pc+12 w 0 - N cycle 1 s

4 pc’ w 0 (pc’) S cycle 0 s

5 pc’+4 w 0 (pc’+4) S cycle 0 s

pc’+8
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Either the base or the destination (or both) may be the PC. The prefetch sequence 
changes when the PC is affected by the instruction. If the data fetch aborts, the 
ARM7TDMI-S prevents modification of the destination register.

Note

Destination equals PC is not possible in Thumb state.
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6.9 Store register

A store register has two cycles:

1. During the first cycle, the ARM7TDMI-S calculates the address to be stored. 

2. During the second cycle, the ARM7TDMI-S performs the base modification and 
writes the data to memory (if required). 

The store register cycle timings are shown in Table 6-12, where:

s represents current mode-dependent value.

t is either 0, when the T bit is specified in the instruction (STRT), or c at 
all other times. 

Table 6-12 Store register instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0 Prot1

1 pc+2i w/h 0 (pc+2i) N cycle 0 s

2 da b/h/w 1 Rd N cycle 1 t

 pc+3i
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6.10 Load multiple registers

A load multiple (LDM) takes four cycles: 

1. During the first cycle, the ARM7TDMI-S calculates the address of the first word 
to be transferred, while performing a prefetch from memory. 

2. During the second cycle, the ARM7TDMI-S fetches the first word and performs 
the base modification.

3. During the third cycle, the ARM7TDMI-S moves the first word to the 
appropriate destination register, and fetches the second word from memory. The 
ARM7TDMI-S latches the modified base internally, in case it is needed after an 
abort. The third cycle is repeated for subsequent fetches until the last data word 
has been accessed. 

4. During the fourth and final (internal) cycle, the ARM7TDMI-S moves the last 
word to its destination register. The last cycle may be merged with the next 
instruction prefetch to form a single memory N-cycle.

When an abort occurs, the instruction continues to completion. The ARM7TDMI-S 
prevents all register writing after the abort. The ARM7TDMI-S changes the final cycle 
to restore the modified base register (which the load activity before the abort occurred 
may have overwritten). 

When the PC is in the list of registers to be loaded, the ARM7TDMI-S invalidates the 
current instruction pipeline. The PC is always the last register to load, so an abort at any 
point prevents the PC from being overwritten.

Note

LDM with destination = PC cannot be executed in Thumb state. However, 
POP{Rlist,PC}  equates to an LDM with destination = PC.

The LDM cycle timings are shown in Table 6-13.

Table 6-13 Load multiple registers instruction cycle operations

 Cycle Address Size Write Data TRANS[1:0] Prot0

1 register 1 pc+2i w/h 0 (pc+2i) N cycle 0

2 da w 0 da I cycle 1

3 pc+3i w/h 0 - S cycle 1

 pc+3i
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1 register 1 pc+2i w/h 0 (pc+2i) N cycle 0

dest=pc 2 da w 0 pc’ I cycle 1

3 pc+3i w/h 0 - N cycle 1

4 pc’ w/h 0 (pc’) S cycle 0

 5 pc’+i w/h 0 (pc’+i) S cycle 0

pc’+2i

n registers 1 pc+2i w/h 0 (pc+2i) N cycle 0

(n>1) 2 da w 0 da S cycle 1

• da++ w 0 (da++) S cycle 1

n da++ w 0 (da++) S cycle 1

n+1 da++ w 0 (da++) I cycle 1

n+2 pc+3i w/h 0 - S cycle 1

pc+3i

n registers 1 pc+2i w/h 0 (pc+2i) N cycle 0

(n>1) 2 da w 0 da S cycle 1

incl pc • da++ w 0 (da++) S cycle 1

n da++ w 0 (da++) S cycle 1

n+1 da++ w 0 pc’ I cycle 1

n+2 pc+3i w/h 0 - N cycle 1

n+3 pc’ w/h 0 (pc’) S cycle 0

n+4 pc’+i w/h 0 (pc’+i) S cycle 0

pc’+2i

Table 6-13 Load multiple registers instruction cycle operations (continued)

 Cycle Address Size Write Data TRANS[1:0] Prot0
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6.11 Store multiple registers

Store multiple (STM) proceeds very much as load multiple, although without the final 
cycle. There are therefore two cycles:

1. During the first cycle, the ARM7TDMI-S calculates the address of the first word 
to be stored. 

2. During the second cycle, the ARM7TDMI-S performs the base modification and 
writes the data to memory.

Restart is straightforward, because there is no general overwriting of registers.

The STM cycle timings are shown in Table 6-14. 

Table 6-14 Store multiple registers instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0

1 register 1 pc+2i w/h 0 (pc+2i) N cycle 0

2 da w 1 R N cycle 1

pc+3i

n registers 1 pc+8 w/h 0 (pc+2i) N cycle 0

(n>1) 2 da w 1 R S cycle 1

• da++ w 1 R’ S cycle 1

n da++ w 1 R’’ S cycle 1

n+1 da++ w 1 R’’’ N cycle 1

 pc+12
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6.12 Data swap

Data swap is similar to the load and store register instructions, although the swap takes 
place in cycles 2 and 3. The data is fetched from external memory in the second cycle, 
and in the third cycle, the contents of the source register are written to the external 
memory. In the fourth cycle the data read during cycle 2 is written into the destination 
register.

The data swapped may be a byte or word quantity (b/w).

The ARM7TDMI-S may abort the swap operation in either the read or write cycle. The 
swap operation (read or write) does not affect the destination register.

The data swap cycle timings are shown in Table 6-15, where b and w are byte and word 
as defined in Table D-5 on page D-30.

Note

Data swap cannot be executed in Thumb state.

The LOCK  output of the ARM7TDMI-S is driven HIGH for both load and store data 
cycles to indicate to the memory controller that this is an atomic operation.

Table 6-15 Data swap instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0 Lock

1 pc+8 w 0 (pc+8) N cycle 0 0

2 Rn w/b 0 (Rn) N cycle 1 1

3 Rn w/b 1 Rm I cycle 1 1

4 pc+12 w 0 - S cycle 1 0

pc+12
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6.13 Software interrupt and exception entry

Exceptions and software interrupts (SWIs) force the PC to a specific value and refill the 
instruction pipeline from this address: 

1. During the first cycle, the ARM7TDMI-S constructs the forced address, and a 
mode change may take place. The ARM7TDMI-S moves the return address to 
r14 and moves the CPSR to SPSR_svc.

2. During the second cycle, the ARM7TDMI-S modifies the return address to 
facilitate return (although this modification is less useful than in the case of 
branch with link). 

3. The third cycle is required only to complete the refilling of the instruction 
pipeline.

The SWI cycle timings are shown in Table 6-16, where:

s represents the current supervisor-mode-dependent value.

t represents the current Thumb-state value.

pc is, for software interrupts, the address of the SWI instruction.
For exceptions, this is the address of the instruction following the last one 
to be executed before entering the exception.
For prefetch aborts, this is the address of the aborting instruction. 
For data aborts, this is the address of the instruction following the one that 
attempted the aborted data transfer.

Xn is the appropriate trap address.

Table 6-16 Software interrupt instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0 Prot1 Mode Tbit

1 pc+2i w/h 0 (pc+2i) N cycle 0 s old mode t

2 Xn w’ 0 (Xn) S cycle 0 1 exception
mode

0

3 Xn+4 w’ 0 (Xn+4) S cycle 0 1 exception
mode

0

Xn+8
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6.14 Coprocessor data processing operation

A coprocessor data processing (CDP) operation is a request from the ARM7TDMI-S 
for the coprocessor to initiate some action. There is no need to complete the action 
immediately, but the coprocessor must commit to completion before driving CPB 
LOW.

If the coprocessor cannot perform the requested task, it leaves CPA and CPB HIGH. 
When the coprocessor is able to perform the task, but cannot commit immediately, the 
coprocessor drives CPA LOW, but leaves CPB HIGH until able to commit. The 
ARM7TDMI-S busy-waits until CPB goes LOW. However, an interrupt may cause the 
ARM7TDMI-S to abandon a busy-waiting coprocessor instruction (see Consequences 
of busy-waiting on page 4-8).

The coprocessor data operations cycle timings are shown in Table 6-17.

Note

Coprocessor operations are available only in ARM state.

Table 6-17 Coprocessor data operation instruction cycle operations

Cycle Address Write Size Data TRANS[1:0] Prot0 CPnI CPA CPB

ready 1 pc+8 0 w (pc+8) N cycle 0 0 0 0

pc+12

not ready 1 pc+8 0 w (pc+8) I cycle 0 0 0 1

2 pc+8 0 w - I cycle 1 0 0 1

• pc+8 0 w - I cycle 1 0 0 1

n pc+8 0 w - N cycle 1 0 0 0

pc+12
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6.15 Load coprocessor register (from memory to coprocessor)

The load coprocessor (LDC) operation transfers one or more words of data from 
memory to coprocessor registers.

The coprocessor commits to the transfer only when it is ready to accept the data. The 
WRITE  line is driven LOW during the transfer cycle. When CPB goes LOW, the 
ARM7TDMI-S produces addresses, and expects the coprocessor to take the data at 
sequential cycle rates. The coprocessor is responsible for determining the number of 
words to be transferred. An interrupt may cause the ARM7TDMI-S to abandon a 
busy-waiting coprocessor instruction (see Consequences of busy-waiting on page 4-8).

The first cycle (and any busy-wait cycles) generates the transfer address. The second 
cycle performs the write-back of the address base. The coprocessor indicates the last 
transfer cycle by driving CPA and CPB HIGH.

The load coprocessor register cycle timings are shown in Table 6-18.

Table 6-18 Load coprocessor register instruction cycle operations

 Cycle Address Size Write Data TRANS[1:0] Prot0 CPnI CPA CPB

1 register 1 pc+8 w 0 (pc+8) N cycle 0 0 0 0

ready 2 da w 0 (da) N cycle 1 1 1 1

pc+12

1 register 1 pc+8 w 0 (pc+8) I cycle 0 0 0 1

not ready 2 pc+8 w 0 - I cycle 1 0 0 1

• pc+8 w 0 - I cycle 1 0 0 1

n pc+8 w 0 - N cycle 1 0 0 0

n+1 da w 0 (da) N cycle 1 1 1 1

pc+12

m registers 1 pc+8 w 0 (pc+8) N cycle 0 0 0 0

(m>1) 2 da w 0 (da) S cycle 1 1 0 0

ready • da++ w 0 (da++) S cycle 1 1 0 0

m da++ w 0 (da++) S cycle 1 1 0 0

m+1 da++ w 0 (da++) N cycle 1 1 1 1

pc+12
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Note

Coprocessor operations are available only in ARM state.

m registers 1 pc+8 w 0 (pc+8) I cycle 0 0 0 1

(m>1) 2 pc+8 w 0 - I cycle 1 0 0 1

not ready • pc+8 w 0 - I cycle 1 0 0 1

n pc+8 w 0 - N cycle 1 0 0 0

n+1 da w 0 (da) S cycle 1 1 0 0

• da++ 0 (da++) S cycle 1 1 0 0

n+m da++ w 0 (da++) S cycle 1 1 0 0

n+m+1 da++ w 0 (da++) N cycle 1 1 1 1

pc+12

Table 6-18 Load coprocessor register instruction cycle operations (continued)

 Cycle Address Size Write Data TRANS[1:0] Prot0 CPnI CPA CPB
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6.16 Store coprocessor register (from coprocessor to memory)

The store coprocessor (STC) operation transfers one or more words of data from 
coprocessor registers to memory.

The coprocessor commits to the transfer only when it is ready to write data. The 
WRITE  line is driven HIGH during the transfer cycle. When CPB goes LOW, the 
ARM7TDMI-S produces addresses, and expects the coprocessor to write the data at 
sequential cycle rates. The coprocessor is responsible for determining the number of 
words to be transferred. An interrupt may cause the ARM7TDMI-S to abandon a 
busy-waiting coprocessor instruction (see Consequences of busy-waiting on page 4-8).

The first cycle (and any busy-wait cycles) generates the transfer address. The second 
cycle performs the write-back of the address base. The coprocessor indicates the last 
transfer cycle by driving CPA and CPB HIGH.

The store coprocessor register cycle timings are shown in Table 6-19.

Table 6-19 Store coprocessor register instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0 CPnI CPA CPB

1 register 1 pc+8 w 0 (pc+8) N cycle 0 0 0 0

ready 2 da w 1 CPdata N cycle 1 1 1 1

pc+12

1 register 1 pc+8 w 0 (pc+8) I cycle 0 0 0 1

not ready 2 pc+8 w 0 - I cycle 1 0 0 1

• pc+8 w 0 - I cycle 1 0 0 1

n pc+8 w 0 - N cycle 1 0 0 0

n+1 da w 1 CPdata N cycle 1 1 1 1

pc+12

m registers 1 pc+8 w 0 (pc+8) N cycle 0 0 0 0

(m>1) 2 da w 1 CPdata S cycle 1 1 0 0

ready • da++ w 1 CPdata’ S cycle 1 1 0 0

m da++ w 1 CPdata’’ S cycle 1 1 0 0

m+1 da++ w 1 CPdata’’’ N cycle 1 1 1 1

pc+12
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Note

Coprocessor operations are available only in ARM state.

m registers 1 pc+8 w 0 (pc+8) I cycle 0 0 0 1

(m>1) 2 pc+8 w 0 - I cycle 1 0 0 1

not ready • pc+8 w 0 - I cycle 1 0 0 1

n pc+8 w 0 - N cycle 1 0 0 0

n+1 da w 1 CPdata S cycle 1 1 0 0

• da++ w 1 CPdata S cycle 1 1 0 0

n+m da++ w 1 CPdata S cycle 1 1 0 0

n+m+1 da++ w 1 CPdata N cycle 1 1 1 1

pc+12

Table 6-19 Store coprocessor register instruction cycle operations (continued)

Cycle Address Size Write Data TRANS[1:0] Prot0 CPnI CPA CPB
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6.17 Coprocessor register transfer (move from coprocessor to ARM register)

The move from coprocessor (MRC) operation reads a single coprocessor register into 
the specified ARM register. 

Data is transferred in the second cycle, and written to the ARM register during the third 
cycle of the operation.

If the coprocessor signals busy-wait by asserting CPB, an interrupt may cause the 
ARM7TDMI-S to abandon the coprocessor instruction (see Consequences of 
busy-waiting on page 4-8).

As is the case with all ARM7TDMI-S register load instructions, the ARM7TDMI-S 
may merge the third cycle with the following prefetch cycle into a merged I-S cycle.

The MRC cycle timings are shown in Table 6-20.

Note

This operation cannot occur in Thumb state.

Table 6-20 Coprocessor register transfer (MRC)

Cycle Address Size Write Data TRANS[1:0] Prot0 CPnI CPA CPB

ready 1 pc+8 w 0 (pc+8) C cycle 0 0 0 0

2 pc+12 w 0 CPdata I cycle 1 1 1 1

3 pc+12 w 0 - S cycle 1 1 - -

 pc+12

not ready 1 pc+8 w 0 (pc+8) I cycle 0 0 0 1

2 pc+8 w 0 - I cycle 1 0 0 1

• pc+8 w 0 - I cycle 1 0 0 1

n pc+8 w 0 - C cycle 1 0 0 0

n+1 pc+12 w 0 CPdata I cycle 1 1 1 1

n+2 pc+12 w 0 - S cycle 1 1 - -

pc+12
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6.18 Coprocessor register transfer (move from ARM register to coprocessor)

The move to coprocessor (MCR) operation transfers the contents of a single ARM 
register to a specified coprocessor register. 

The data is transferred to the coprocessor during the second cycle.If the coprocessor 
signals busy-wait by asserting CPB, an interrupt may cause the ARM7TDMI-S to 
abandon the coprocessor instruction (see Consequences of busy-waiting on page 4-8).

The MCR cycle timings are shown in Table 6-21.

Note

Coprocessor operations are available only in ARM state.

Table 6-21 Coprocessor register transfer (MCR)

 Cycle Address Size Write Data TRANS[1:0] Prot0 CPnI CPA CPB

ready 1 pc+8 w 0 (pc+8) C cycle 0 0 0 0

2 pc+12 w 1 Rd N cycle 1 1 1 1

 pc+12

not ready 1 pc+8 w 0 (pc+8) I cycle 0 0 0 1

2 pc+8 w 0 - I cycle 1 0 0 1

• pc+8 w 0 - I cycle 1 0 0 1

n pc+8 w 0 - C cycle 1 0 0 0

n+1 pc+12 w 1 Rd N cycle 1 1 1 1

pc+12
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6.19 Undefined instructions and coprocessor absent

The undefined instruction trap is taken if an undefined instruction is executed. For a 
definition of undefined instructions, see the ARM Architecture Reference Manual.

If no coprocessor is able to accept a coprocessor instruction, the instruction is treated as 
an undefined instruction. This allows software to emulate coprocessor instructions 
when no hardware coprocessor is present.

Note

By default CPA and CPB must be driven HIGH unless the coprocessor instruction is 
being handled by a coprocessor. 

Undefined instruction cycle timings are shown in Table 6-22.

where:

s represents the current mode-dependent value.

t represents the current state-dependent value.

Note

Coprocessor operations are available only in ARM state.

Table 6-22 Undefined instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0 CPnI CPA CPB Prot1 Mode Tbit

1 pc+2i w/h 0 (pc+2i) I cycle 0 0 1 1 s Old t

2 pc+2i w/h 0 - N cycle 0 1 1 1 s Old t

3 Xn w’ 0 (Xn) S cycle 0 1 1 1 1 00100 0

4 Xn+4 w’ 0 (Xn+4) S cycle 0 1 1 1 1 00100 0

Xn+8
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6.20 Unexecuted instructions

When the condition code of any instruction is not met, the instruction is not executed. 
An unexecuted instruction takes one cycle.

Unexecuted instruction cycle timings are shown in Table 6-23.

Table 6-23 Unexecuted instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0

1 pc+2i w/h 0 (pc+2i) S cycle 0

pc+3i
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Chapter 7
AC Parameters

This chapter gives the AC timing parameters of the ARM7TDMI-S:

• Timing diagrams on page 7-2

• AC timing parameter definitions on page 7-7.
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7.1 Timing diagrams

The timing diagrams in this section are:

• Figure 7-1 Timing parameters

• Figure 7-2 Coprocessor timing

• Figure 7-3 Exception and configuration input timing

• Figure 7-4 Debug timing

• Figure 7-5 Scan general timing.



AC Parameters

ARM DDI 0084E © Copyright ARM Limited 1999. All rights reserved. 7-3

Figure 7-1 Timing parameters

Note

The timing for both read and write data access are superimposed in the figure. The 
WRITE  signal conveys whether the access uses the read RDATA or WDATA port.

CLKEN  LOW stretches the data access when the read or write transaction is unable to 
complete within a single cycle.

The data buses are used for transfer only when the transaction signals TRANS[1:0] 
indicate a valid memory cycle or a coprocessor register transfer cycle.
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Figure 7-2 Coprocessor timing

Figure 7-3 Exception and configuration input timing
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Figure 7-4 Debug timing

Note

DBGBREAK  is sampled on rising clock, so external data-dependent breakpoints and 
watchpoints must be matched and signalled by this edge.

CLK

DBGRQ

DBGBREAK

DBGEXT[1:0]

DBGACK

DBGRNG[1:0]

tisdbgctl
tihdbgctl

tisdbgctl
tihdbgctl

tisdbgctl
tihdbgctl

tovdbgstat
tohdbgstat

tovdbgstat
tohdbgstat



AC Parameters

7-6 © Copyright ARM Limited 1999. All rights reserved. ARM DDI 0084E

Figure 7-5 Scan general timing
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7.2 AC timing parameter definitions

Table 7-1 shows target AC parameters. All figures are expressed as percentages of the 
CLK  period at maximum operating frequency.

Note

Where 0% is given, this indicates the hold time to clock edge plus the maximum clock 
skew for internal clock buffering.

Table 7-1 Provisional AC parameters

Symbol Parameter Min Max

tcyc CLK  cycle time. 100%

tisready CLKEN  input setup to rising CLK . 40%

tihready CLKEN  input hold from rising CLK . 0%

tisabort ABORT  input setup to rising CLK . 15%

tishbort ABORT  input hold from rising CLK . 0%

tisrdata RDATA  input setup to rising CLK . 10%

tihrdata RDATA  input hold from rising CLK . 0%

tovaddr Rising CLK  to ADDR valid. 90%

tohaddr ADDR hold time from rising CLK . >0%

tovctl Rising CLK  to control valid. 90%

tohctl Control hold time from rising CLK . >0%

tovtran Rising CLK  to transaction type valid. 50%

tohtran Transaction type hold time from rising CLK . >0%

tovwdata Rising CLK  to WDATA  valid. 40%

tohwdata WDATA  hold time from rising CLK . >0%

tiscpstat CPA, CPB input setup to rising CLK . 20%

tihcpstat CPA, CPB input hold from rising CLK . 0%
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tovcpctl Rising CLK  to coprocessor control valid. 80%

tohcpctl Coprocessor control hold time from rising CLK . >0%

tovcpni Rising CLK  to coprocessor CPnI valid. 40%

tohcpni Coprocessor CPnI hold time from rising CLK . >0%

tisexc nFIQ , nIRQ , nRESET setup to rising CLK . 10%

tihexc nFIQ , nIRQ , nRESET hold from rising CLK . 0%

tisdbgstat Debug status inputs setup to rising CLK . 10%

tihdbgstat Debug status inputs hold from rising CLK . 0%

tovdbctrl Rising CLK  to debug control valid. 40%

tohdbctrl Debug control hold time from rising CLK . >0%

tistcken DBGTCKEN  input setup to rising CLK . 40%

tihtcken DBGTCKEN  input hold from rising CLK . 0%

tistctl DBGTDI , DBGTMS input setup to rising CLK . 35%

tihtctl DBGTDI , DBGTMS input hold from rising CLK . 0%

tovtdo Rising CLK  to DBGTDO valid. 20%

tohtdo DBGTDO hold time from rising CLK . >0%

Table 7-1 Provisional AC parameters  (continued)

Symbol Parameter Min Max
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Appendix A
Signal Descriptions

This appendix lists and describes all the ARM7TDMI-S signals.
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A.1 Signal descriptions

The signals of the ARM7TDMI-S are given in Table A-1.

Table A-1 Signal descriptions

Name Type Description

ABORT Input Memory abort or bus error. This is an input which is used by the memory system to signal 
to the processor that a requested access is disallowed.

ADDR[31:0] Output This is the processor address bus.

CFGBIGEND Input Big-endian configuration. When this signal is HIGH, the processor treats bytes in memory 
as being in big-endian format. When the signal is LOW, memory is treated as little-endian.
CFGBIGEND  is normally a static configuration signal.
(This signal is analogous to BIGEND  on the hard macrocell.)

CLK Input Clock input. This clock times all ARM7TDMI-S memory accesses and internal 
operations. All outputs change from the rising edge of CLK , and all inputs are sampled on 
the rising edge of CLK .
The CLKEN  input may be used with a free-running CLK  to add synchronous wait-states.
Alternatively, the clock may be stretched indefinitely in either phase to allow access to 
slow peripherals or memory, or to put the system into a low-power state. 
CLK is also used for serial scan-chain debug operation with the EmbeddedICE tool-
chain. (This signal is analogous to inverted MCLK  on the hard macrocell.)

CLKEN Input Wait state control. When accessing slow peripherals, the ARM7TDMI-S can be made to 
wait for an integer number of CLK  cycles by driving CLKEN LOW. When the CLKEN 
control is not used, it must be tied HIGH.
(This signal is analogous to nWAIT  on the hard macrocell.)

CPA Input Coprocessor absent handshake. A coprocessor which is capable of performing the 
operation that the ARM7TDMI-S is requesting (by asserting nCPI), takes CPA LOW, set 
up to the cycle edge that precedes the coprocessor access. When CPA is signalled HIGH, 
and the coprocessor cycle is executed (as signalled by CPnI signalled LOW), the 
ARM7TDMI-S aborts the coprocessor handshake and takes the undefined instruction 
trap. When CPA is LOW and remains LOW, the ARM7TDMI-S busy-waits until CPB is 
LOW, and then completes the coprocessor instruction. 

CPB Input Coprocessor busy handshake. A coprocessor is capable of performing the operation 
requested by the ARM7TDMI-S (by asserting CPnI), but cannot commit to starting it 
immediately, indicates this by driving CPB HIGH. 
When the coprocessor is ready to start, it takes CPB LOW, with the signal being set up 
before the start of the coprocessor instruction execution cycle.

CPnI Output Not coprocessor instruction. When the ARM7TDMI-S executes a coprocessor instruction, 
it takes this output LOW and waits for a response from the coprocessor. The action taken 
depends on this response, which the coprocessor signals on the CPA and CPB inputs.



Signal Descriptions

ARM DDI 0084E © Copyright ARM Limited 1999. All rights reserved. A-3

CPnMREQ Output Not memory request. When LOW, this signal indicates that the processor requires 
memory access during the next transaction.
(This signal is analogous to nMREQ  on the hard macrocell.)

CPnOPC Output Not opcode fetch. When LOW, this signal indicates that the processor is fetching an 
instruction from memory. When HIGH, data (if present) is being transferred.
(This signal is analogous to nOPC on the hard macrocell, and to BPROT[0] on the 
AMBA ASB.)

CPSEQ Output Sequential address. This output signal becomes HIGH when the address of the next 
memory cycle is related to that of the last memory access. The new address is either the 
same as the previous one, or four greater in ARM state, or two greater when fetching 
opcodes in Thumb state.
(This signal is analogous to SEQ on the hard macrocell.)

CPTBIT Output When HIGH, this signal indicates to a coprocessor that the processor is executing the 
Thumb instruction set. When LOW, the processor is executing the ARM instruction set.

CPnTRANS Output Not memory translate. When LOW, this signal indicates that the processor is in user 
mode. It can be used to signal to memory management hardware when to bypass 
translation of the addresses, or as an indicator of privileged mode activity.
(This signal is analogous to nTRANS on the hard macrocell.)

DBGACK Output Debug acknowledge. When HIGH, this signal DBGBREAK  the ARM7TDMI-S is in 
debug state. It is enabled only when DBGEN is HIGH.

DBGBREAK Input EmbeddedICE breakpoint/watchpoint indicator. This signal allows external hardware to 
halt the execution of the processor for debug purposes. 
When HIGH, this signal causes the current memory access to be breakpointed.
When the memory access is an instruction fetch, the ARM7TDMI-S enters debug state if 
the instruction reaches the execute stage of the ARM7TDMI-S pipeline. 
When the memory access is for data, the ARM7TDMI-S enters debug state after the 
current instruction completes execution.This allows extension of the internal breakpoints 
provided by the EmbeddedICE module.
DBGBREAK  is enabled only when DBGEN is HIGH.
(This signal is analogous to BREAKPT on the hard macrocell.)

DBGCOMMRX Output EmbeddedICE communications channel receive. When HIGH, this signal indicates that 
the comms channel receive buffer is full. DBGCOMMRX  is enabled only when DBGEN 
is HIGH.
(This signal is analogous to COMMRX  on the hard macrocell.)

Table A-1 Signal descriptions (continued)

Name Type Description
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DBGCOMMTX Output EmbeddedICE communications channel transmit. When HIGH, this signal denotes that 
the comms channel transmit buffer is empty. DBGCOMMTX  is enabled only when 
DBGEN is HIGH.
(This signal is analogous to COMMTX on the hard macrocell.)

DBGEN Input Debug enable. This input signal enables the debug features of the ARM7TDMI-S. If you 
intend to use the ARM7TDMI-S debug features, tie this signal HIGH. Drive this signal 
LOW only when debugging is not required.

DBGnEXEC Output Not executed. When HIGH, this signal indicates that the instruction in the execution unit 
is not being executed (because, for example, it has failed its condition code check).

DBGEXT[1:0] Input EmbeddedICE external input 0, external input 1. These are inputs to the EmbeddedICE 
macrocell logic in the ARM7TDMI-S which allow breakpoints and/or watchpoints to be 
dependent on an external condition. The inputs are enabled only when DBGEN is HIGH.
(These signals are analogous to EXTERN[1:0]  on the hard macrocell.)

DBGRNG[1:0] Output EmbeddedICE rangeout. This signal indicates that EmbeddedICE watchpoint register 0/1 
has matched the conditions currently present on the address, data, and control buses. 
This signal is independent of the state of the watchpoint enable control bit.
The signal is enabled only when DBGEN is HIGH
(This signal is analogous to RANGE[1:0]  on the hard macrocell.)

DBGRQ Input Debug request. This internally synchronized input signal requests the processor to enter 
debug state. DBGRQ is enabled only when DBGEN is HIGH.

DBGTCKEN Input Test clock enable. DBGTCKEN  is enabled only when DBGEN is HIGH.

DBGTDI Input EmbeddedICE data in. JTAG test data input. DBGTDI  is enabled only when DBGEN is 
HIGH.

DBGTDO Output EmbeddedICE data out. Output from the boundary scan logic. DBGTDO is enabled only 
when DBGEN is HIGH.

DBGnTDOEN Output Not DBGTDO enable. When LOW, this signal denotes that serial data is being driven out 
on the DBGTDO output. DBGnTDOEN would normally be used as an output enable for 
a DBGTDO pin in a packaged part.

DBGTMS Input EmbeddedICE mode select. JTAG test mode select. DBGTMS is enabled only when 
DBGEN is HIGH.

DBGnTRST Input Not test reset. This is the internally synchronized active-low reset signal for the 
EmbeddedICE macrocell internal state.

Table A-1 Signal descriptions (continued)

Name Type Description
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nFIQ Input Active-low fast interrupt request. This is a high-priority synchronous interrupt request to 
the processor. If the appropriate enable in the processor is active when this signal is taken 
LOW, the processor is interrupted. 
This signal is level-sensitive, and must be held LOW until a suitable interrupt 
acknowledge response is received from the processor. 
(This signal is analogous to nFIQ on the hard macrocell when ISYNC is HIGH).

nIRQ Input Active-low interrupt request. This is a lower-priority synchronous interrupt request to the 
processor. If the appropriate enable in the processor is active when this signal is taken 
LOW, the processor is interrupted. 
This signal is level-sensitive, and must be held LOW until a suitable interrupt 
acknowledge response is received from the processor.
(This signal is analogous to nIRQ  on the hard macrocell when ISYNC is HIGH.)

LOCK Output Locked transaction operation. When LOCK is HIGH, the processor is performing a 
locked memory access. the arbiter must wait until LOCK  goes LOW before allowing 
another device to access the memory.

PROT[1:0] Output These output signals to the memory system indicate whether the output is code or data, 
and whether access is user-mode or privileged access:
x0 opcode fetch
x1 data access
0x user-mode access
1x supervisor or privileged mode access

RDATA[31:0] Input Read data input bus. This is the read data bus used to transfer instructions and data 
between the processor and memory. The data on this bus is sampled by the processor at 
the end of the clock cycle during read accesses (that is, when WRITE is LOW).
(This signal is analogous to DIN[31:0]  on the hard macrocell.)

nRESET Input Not reset. This input signal forces the processor to terminate the current instruction, and 
subsequently to enter the reset vector in supervisor mode. It must be asserted for at least 
two cycles. 
A LOW level forces the instruction being executed to terminate abnormally on the next 
non-wait cycle, and causes the processor to perform idle cycles at the bus interface. 
When nRESET becomes HIGH for at least one clock cycle, the processor restarts from 
address 0.

SCANENABLE Input Scan test path enable (for automatic test pattern generation) is LOW for normal system 
configuration, and HIGH during scan testing.

SCANIN Input Scan test path serial input (for automatic test pattern generation). Serial shift register input 
is active when SCANENABLE  is active (HIGH).

Table A-1 Signal descriptions (continued)

Name Type Description
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SCANOUT Output Scan test path serial output (for automatic test pattern generation). Serial shift register 
output is active when SCANENABLE  is active (HIGH).

SIZE[1:0] Output Memory access width. These output signals indicate to the external memory system when 
a word transfer or a halfword or byte length is required:
00 8-bit byte access (addressed in word by ADDR[1:0])
01 16-bit halfword access (addressed in word by ADDR[1] )
10 32-bit word access (always word-aligned)
11 (reserved)
(This signal is analogous to MAS[1:0]  on the hard macrocell.)

TRANS[1:0] Output Next transaction type. TRANS indicates the next transaction type:
00 address-only (internal operation cycle)
01 coprocessor
10 memory access at non-sequential address
11 memory access at sequential burst address
(The TRANS[1] signal is analogous to inverted nMREQ , and the TRANS[0] signal is 
analogous to SEQ on the hard macrocell. TRANS is analogous to BTRAN  on the AMBA 
system bus.)

WDATA[31:0] Output Write data output bus. This is the write data bus, used to transfer data from the processor 
to the memory or coprocessor system. 
Write data is set up to the end of the cycle of store accesses (that is, when WRITE is 
HIGH), and remains valid throughout wait states.
(This signal is analogous to DOUT[31:0] on the hard macrocell.)

WRITE Output Write/read access. When HIGH, WRITE  indicates a processor write cycle, when LOW, it 
indicates a processor read cycle.
(This signal is analogous to nRW on the hard macrocell.)

Table A-1 Signal descriptions (continued)

Name Type Description
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Appendix B
Differences Between the ARM7TDMI-S and the 
ARM7TDMI

This appendix describes the differences between the ARM7TDMI-S and ARM7TDMI 
macrocell interfaces:

• Interface signals on page B-2

• ATPG scan interface on page B-7

• Timing parameters on page B-8

• ARM7TDMI-S design considerations on page B-9.
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B.1 Interface signals

The signal names have prefixes which identify groups of functionally-related signals: 

CFGxxx shows configuration inputs (typically hard wired for an embedded 
application).

CPxxx shows coprocessor expansion interface signals.

DBGxxx shows scan-based EmbeddedICE debug support input or output.

Other signals provide the system designer’s interface which is primarily 
memory-mapped. Table B-1 provides the ARM7TDMI-S signals with their 
ARM7TDMI hard macrocell equivalent signals. The notes to this table are given in 
Notes to Table B-1 on page B-5.

Table B-1 ARM7TDMI-S signals and ARM7TDMI hard macrocell equivalents

ARM7TDMI-S
signal

Function
ARM7TDMI hard 
macrocell equivalent

Note

ABORT 1 = memory abort or bus error.
0 = no error.

ABORT

ADDR[31:0] 32-bit address output bus, available in the cycle preceding the 
memory cycle.

A[31:0] 1

CFGBIGEND 1 = big-endian configuration.
0 = little-endian configuration.

BIGEND

CLK Master rising edge clock. All inputs are sampled on the rising 
edge of CLK .
All timing dependencies are from the rising edge of CLK .

MCLK 2

CLKEN System memory interface clock enable:
1 = advance the core on rising CLK .
0 = prevent the core advancing on rising CLK .

NWAIT 3

CPA Coprocessor absent. Tie HIGH when no coprocessor is present.CPA 4

CPB Coprocessor busy. Tie HIGH when no coprocessor is present.CPB 4

CPnI Active LOW coprocessor instruction execute qualifier. nCPI

CPnMREQ Active LOW memory request signal, pipelined in the preceding 
access. This is a coprocessor interface signal.
Use the ARM7TDMI-S output TRANS[1:0] for bus 
interface design.

nMREQ
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CPnOPC Active LOW opcode fetch qualifier output, pipelined in the 
preceding access. This is a coprocessor interface signal.
Use the ARM7TDMI-S output PROT[1:0] for bus interface 
design.

nOPC

CPnTRANS Active LOW supervisor mode access qualifier output. This is a 
coprocessor interface signal.
Use the ARM7TDMI-S output PROT[1:0] for bus interface 
design.

nTRANS

CPSEQ Sequential address signal. This is a coprocessor interface 
signal.
Use the ARM7TDMI-S output TRANS[1:0] for bus 
interface design.

SEQ

CPTBIT Instruction set qualifier output:
1 = THUMB instruction set.
0 = ARM instruction set.

TBIT

DBGACK Debug acknowledge qualifier output:
1 = processor in debug state (real-time stopped).
0 = normal system state.

DBGACK

DBGBREAK External breakpoint (tie LOW when not used). BREAKPT

DBGCOMMRX EmbeddedICE communication channel receive buffer full 
output.

COMMRX

DBGCOMMTX EmbeddedICE communication channel transmit buffer empty 
output.

COMMTX

DBGEN Debug enable. Tie this signal HIGH in order to be able to use 
the debug features of the ARM7TDMI.

DBGEN

DBGEXT[1:0] EmbeddedICE EXTERN  debug qualifiers (tie LOW when not 
required).

EXTERN0, EXTERN1

DBGnEXEC Active LOW condition codes success at execute stage, 
pipelined in the preceding access.

nEXEC

DBGnTDOEN Active LOW TAP controller DBGTDO output qualifier. nTDOEN 6

DBGnTRST Active LOW TAP controller reset (asynchronous assertion). 
Resets the ICEBreaker subsystem.

nTRST 6

Table B-1 ARM7TDMI-S signals and ARM7TDMI hard macrocell equivalents (continued)

ARM7TDMI-S
signal

Function
ARM7TDMI hard 
macrocell equivalent

Note
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DBGRNG[1:0] EmbeddedICE rangeout qualifier outputs. RANGEOUT1, 
RANGEOUT0

DBGRQ External debug request (tie LOW when not required). DBGRQ 5

DBGTCKEN Multi-ICE clock input qualifier sampled on the rising edge of 
CLK . Used to qualify CLK  to enable the debug subsystem. 

DBGTDI Multi-ICE TDI  test data input. TDI 6

DBGTDO EmbeddedICE TAP controller serial data output. TDO 6

DBGTMS Multi-ICE TMS test mode select input. TMS 6

LOCK Indicates whether the current address is part of locked access. 
This signal is generated by execution of a SWP instruction.

LOCK 1

nFIQ Active LOW fast interrupt request input. nFIQ 7

nIRQ Active LOW interrupt request input. nIRQ 7

nRESET Active LOW reset input (asynchronous assertion). Resets the 
processor core subsystem.

nRESET

PROT[1:0] Protection output, indicates whether the current address is 
being accessed as instruction or data, and whether it is being 
accessed in a privileged mode or user mode.

nOPC,
nTRANS

1,9

RDATA[31:0] Unidirectional 32-bit input data bus. DIN[31:0] 8

SIZE[1:0] Indicates the width of the bus transaction to the current 
address:
00 = 8-bit.
01 = 16-bit.
10 = 32-bit.
11 = not supported.

MAS[1:0]

Table B-1 ARM7TDMI-S signals and ARM7TDMI hard macrocell equivalents (continued)

ARM7TDMI-S
signal

Function
ARM7TDMI hard 
macrocell equivalent

Note
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Notes to Table B-1

1 All the address class signals (ADDR[31:0], WRITE, SIZE[1:0] , 
PROT[1:0] and LOCK ) change on the rising edge of CLK .

In a system with a low-frequency clock this means that it is possible for 
the signals to change in the first phase of the clock cycle. This is unlike 
the ARM7TDMI hard macrocell where they would always change in the 
last phase of the cycle.

2 CLK  is a rising edge clock. It is inverted with respect to the MCLK  
signal used on the ARM7TDMI hard macrocell.

3 CLKEN  is sampled on the rising edge of CLK . The nWAIT  signal on 
the ARM7TDMI hard macrocell must be held throughout the high phase 
of MCLK . This means that the address class outputs (ADDR[31:0], 
WRITE , SIZE[1:0] , PROT[1:0] and LOCK ) may still change in a 
cycle in which CLKEN  is taken LOW. 

You must take this possibility into account when designing a memory 
system.

4 CPA and CPA are sampled on the rising edge of CLK . They may no 
longer change in the first phase of the next cycle, as is possible with the 
ARM7TDMI hard macrocell.

5 DBGRQ must be synchronized externally to the macrocell. It is not an 
asynchronous input as on the ARM7TDMI hard macrocell.

TCKEN JTAG interface clock enable:
1 = advance the JTAG logic on rising CLK .
0 = prevent the JTAG logic advancing on rising CLK .

TRANS[1:0] Next transaction type output bus:
00 = address-only/idle transaction next.
01 = coprocessor register transaction next.
10 = non-sequential (new address) transaction next.
11 = sequential (incremental address) transaction next.

nMREQ , SEQ

WRITE Write access indicator. nRW 1

Table B-1 ARM7TDMI-S signals and ARM7TDMI hard macrocell equivalents (continued)

ARM7TDMI-S
signal

Function
ARM7TDMI hard 
macrocell equivalent

Note
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6 All JTAG signals are synchronous to CLK  on the ARM7TDMI-S. There 
is no asynchronous TCLK  as on the ARM7TDMI hard macrocell.

An external synchronizing circuit can be used to generate TCLKEN  
when an asynchronous TCLK  is required.

7 nFIQ  and nIRQ  are synchronous inputs to the ARM7TDMI-S, and are 
sampled on the rising edge of CLK . 

Asynchronous interrupts are not supported.

8 The ARM7TDMI-S supports only unidirectional data buses, 
RDATA[31:0] , and WDATA[31:0] . When a bidirectional bus is 
required, you must implement external bus combining logic.

9 PROT[0] is the equivalent of nOPC, and PROT[1] is the equivalent of 
nTRANS on the ARM7TDMI hard macrocell.
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B.2 ATPG scan interface

Where automatic scan path is inserted for automatic test pattern generation, three signals 
are instantiated on the macrocell interface: 

• SCANENABLE is LOW for normal usage, HIGH for scan test

• SCANIN is the serial scan path input

• SCANOUT is the serial scan path output.
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B.3 Timing parameters

The timing constraints have been adjusted to balance the external timing parameters 
with the area of the synthesized core. All inputs are sampled on the rising edge of CLK . 
The timing diagrams associated with these timing parameters are shown in Timing 
diagrams on page 7-2.

The clock enables are sampled on every rising clock edge:

• CLKEN  setup time is tisclken, hold time is tihclken.

• DBGTCKEN  setup time is tistcken, hold time is tihtcken.

All other inputs are sampled on rising edge of CLK  when the clock enable is active 
HIGH:

• ABORT  setup time is tisabort, hold time is tihabort, when CLKEN  is active.

• RDATA  setup time is tisrdata, hold time is tihrdata, when CLKEN  is active.

• DBGTMS, DBGTDI  setup time is tistctl, hold time is tihtctl, when DBGTCKEN  

is active.

Outputs are all sampled on the rising edge of CLK  with the appropriate clock enable 
active: 

• ADDR output hold time is tohaddr, valid time is tovaddr when CLKEN  is active. 

• TRANS output hold time is tohtran, valid time is tovtran when CLKEN  is active. 

• LOCK , PROT, SIZE, WRITE  control output hold time is tohctrl, valid time is 
tovctrl when CLKEN  is active. 

• WDATA  output hold time is tohwdata, valid time is tovwdata when CLKEN  is 
active. 

Similarly, all coprocessor and debug signal expansion signals are defined with input 
setup parameters of tis... , hold parameters of tih... , output hold parameters of toh...and 
output valid parameters of tov... .
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B.4 ARM7TDMI-S design considerations

When an ARM7TDMI hard macrocell design is being converted to the ARM7TDMI-S, 
a number of areas require special consideration. These are the:

• Master clock

• JTAG interface timing

• Interrupt timing

• Address class signal timing.

B.4.1 Master clock

The master clock to the ARM7TDMI-S, CLK , is inverted with respect to MCLK  used 
on the ARM7TDMI hard macrocell. The rising edge of the clock is the active edge of 
the clock, on which all inputs are sampled and all outputs are causal.

B.4.2 JTAG interface timing

All JTAG signals on the ARM7TDMI-S are synchronous to the master clock input, 
CLK . When an external TCLK  is used, use an external synchronizer to the 
ARM7TDMI-S.

B.4.3 Interrupt timing

As with all ARM7TDMI-S signals, the interrupt signals, nIRQ  and nFIQ , are sampled 
on the rising edge of CLK . 

When you are converting an ARM7TDMI hard macrocell design where the ISYNC 
signal is asserted LOW, add a synchronizer to the design to synchronize the interrupt 
signals before they are applied to the ARM7TDMI-S.

B.4.4 Address class signal timing

The address class outputs (ADDR[31:0], WRITE , SIZE[1:0] , PROT[1:0] and 
LOCK ) on the ARM7TDMI-S all change in response to the rising edge of CLK . This 
means that they can change in the first phase of the clock in some systems. When exact 
compatibility is required, add latches to the outside of the ARM7TDMI-S to make sure 
that they can change only in the second phase of the clock.

Because the CLKEN  signal is sampled only on the rising edge of the clock, the address 
class outputs still change in a cycle in which CLKEN  is LOW. (This is similar to the 
behavior of nMREQ  and SEQ in an ARM7TDMI hard macrocell system, when a wait 
state is inserted using nWAIT .) Make sure that the memory system design takes this 
into account. 
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Also make sure that the correct address is used for the memory cycle, even though 
ADDR[31:0] may have moved on to address for the next memory cycle.

For further details, refer to Chapter 3 Memory Interface.
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Appendix C
Implications of Removing the Debugger or 
64-bit Multiply Support

This appendix explains the implications of removing the debugger (EmbeddedICE) or 
implementing only 32-bit multiply:

• Implications of removing EmbeddedICE on page C-2

• Using MUL32 on page C-3

• MUL32 instructions on page C-3

• MUL32 performance on page C-5.
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C.1 Implications of removing EmbeddedICE

When the EmbeddedICE module is deselected, certain input/outputs on the 
ARM7TDMI-S macrocell become unconnected. Designers must make sure that no 
logic is connected to any of the outputs listed below in a design which does not 
incorporate the EmbeddedICE macrocell.

Inputs which become unconnected:

• DBGnTRST
• DBGTCKEN
• DBGTMS
• DBGTDI
• DBGBREAK
• DBGEN
• DBGRQ
• DBGEXT[1:0]

Outputs which become undriven:

• DBGACK
• DBGBREAK
• DBGRNG[1:0]
• DBGTDO
• DBGnTDOEN
• DBGCOMMRX
• DBGCOMMTX
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C.2 Using MUL32

The multiplier is an essential component of ARMTDMI-S architecture. Designers must 
not remove the multiplier altogether, but may wish to substitute the reduced-function 
multiplier variant, MUL32, where reduced functionality is acceptable.

MUL32 offers:

• 32 x 32 multiplier with 32-bit result

• MUL and MLA opcode support for the ARM instruction set

• MUL opcode support for Thumb instruction set

• minimal gate area implementation

• 2 bits per cycle, with early termination for both positive and negative 
multiplicands.

MUL32 does not support any 64-bit result opcodes. These are handled by the undefined 
instruction trap:

• UMULL, UMLAL, SMULL, and SMLAL all trap

• a software trap handler could provide long signed/unsigned instruction 
emulation.

C.2.1 MUL32 instructions

The MUL32 multiplier supports a subset of the full ARM architecture v4T multiply 
instruction set. The supported instructions are given here.

MUL{<cond>}{S}  Rd, Rm, Rs (ARM)

32-bit register x 32-bit register multiplication with 32-bit result executes only when the 
condition codes specified {CC} are met.
Rd := Rm * Rs

Restrictions on registers are:

• the destination register, Rd, must not be the same as the multiplier register, Rm

• neither Rd or Rm can be r15.

The CPSR flags are optionally updated when the set condition codes {S} instruction bit 
is set.
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MLA{<cond>}{S}  Rd, Rm, Rs, Rn (ARM)

32-bit register x 32-bit register multiplication with 32-bit result accumulate executes 
only when the condition codes {CC} specified are met:
Rd := Rn + Rm * Rs

Restrictions on registers are:

• the destination register, Rd, must not be the same as the multiplier register, Rm.

• neither Rd or Rm may be r15.

The CPSR flags are optionally updated when the set condition codes {S} instruction bit 
is set. 

MUL  Rd, Ra (Thumb)

32-bit register x 32-bit register multiplication with 32-bit result, setting condition codes:
Rd := Ra * Rd

maps to ARM 32-bit multiply: 
MULS Rd, Ra, Rd

where Rd and Ra are general-purpose registers in the range r0-r7. 

CPSR Flags

The flags are updated only when the set condition codes {S} instruction bit is set in the 
instruction. 

The Z flag is optionally set only when the 32-bit result is zero.

The N flag is optionally set when bit[31] of the result is set.

Preserve the C and V flags in these instructions.

The ARM Architecture Reference Manual specifies:

• C flag as UNPREDICTABLE

• preserved values as highly desirable for test and modeling.

Instruction cycle times

MUL takes a data-dependent number of cycles to complete. These appear as internal 
cycles to the bus interface (indicating non-memory accesses). 

The minimum number of cycles is 2. The maximum is 17.
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Detailed cycle counts are described in Instruction cycle count summary on page 6-5.

C.2.2 MUL32 performance

Table C-1 shows the performance of MUL32.

Table C-1 MUL32 performance

Multiplier (Rs) operand Cycle count

bits[31:1] all zero or all one 2

bits[31:3] all zero or all one 3

bits[31:5] all zero or all one 4

bits[31:7] all zero or all one 5

bits[31:9] all zero or all one 6

bits[31:11] all zero or all one 7

bits[31:13] all zero or all one 8

bits[31:15] all zero or all one 9

bits[31:17] all zero or all one 10

bits[31:19] all zero or all one 11

bits[31:21] all zero or all one 12

bits[31:23] all zero or all one 13

bits[31:25] all zero or all one 14

bits[31:27] all zero or all one 15

bits[31:29] all zero or all one 16

otherwise 17
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Appendix D
Debug in Depth

This appendix describes in further detail the debug features of the ARM7TDMI-S, and 
includes additional information about the EmbeddedICE macrocell:

• Scan chains and JTAG interface on page D-3

• Scan limitations on page D-3

• Resetting the TAP controller on page D-5

• Instruction register on page D-6

• Public instructions on page D-7

• Test data registers on page D-10

• ARM7TDMI-S core clock domains on page D-14

• Determining the core and system state on page D-15

• Behavior of the program counter during debug on page D-21

• Priorities and exceptions on page D-24

• Scan interface timing on page D-25

• The watchpoint registers on page D-27

• Programming breakpoints on page D-32

• Programming watchpoints on page D-34

• The debug control register on page D-35

• The debug status register on page D-36
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• Coupling breakpoints and watchpoints on page D-38

• Disabling EmbeddedICE on page D-40

• EmbeddedICE timing on page D-41.
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D.1 Scan chains and JTAG interface

There are two JTAG-style scan chains within the ARM7TDMI-S. These allow 
debugging and EmbeddedICE programming.

A JTAG style Test Access Port (TAP) controller controls the scan chains. For further 
details of the JTAG specification, refer to IEEE Standard 1149.1 - 1990 Standard Test 
Access Port and Boundary-Scan Architecture.

D.1.1 Scan limitations

The two scan paths are referred to as scan chain 1 and scan chain 2, and are shown in 
Figure D-1.

Figure D-1 ARM7TDMI-S scan chain arrangements

Scan chain 1

Scan chain 1 provides serial access to the core data bus D[31:0], and the DBGBREAK  
signal.

There are 33 bits in this scan chain, the order being (from serial data in to out): 

• data bus bits 0 through 31

• the DBGBREAK bit (the first to be shifted out).

•

Scan chain 2

Scan chain 1 ARM7TDMI-S

ARM7TDMI-S

EmbeddedICE

ARM7TDMI-S 
TAP controller
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Scan chain 2

Scan chain 2 allows access to the EmbeddedICE registers. Refer to Test data registers 
on page D-10 for details.

D.1.2 TAP state machine

The process of serial test and debug is best explained in conjunction with the JTAG state 
machine. Figure D-2 shows the state transitions that occur in the TAP controller. The 
state numbers shown in the diagram are output from the ARM7TDMI-S on the 
TAPSM[3:0]  bits.

Figure D-2 Test access port controller state transitions
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D.2 Resetting the TAP controller

The boundary-scan interface includes a state machine controller, the TAP controller. To 
force the TAP controller into the correct state after power-up, you must apply a reset 
pulse to the DBGnTRST signal:

• When the boundary-scan interface is to be used, DBGnTRST must be driven 
LOW, and then HIGH again. 

• When the boundary-scan interface is not to be used, the DBGnTRST input may 
be tied permanently LOW.

Note

A clock on CLK with DBGTCKEN HIGH is not necessary to reset the device.

The action of reset is as follows:

1. System mode is selected. This means that, the boundary-scan cells do not 
intercept any of the signals passing between the external system and the core.

2. The IDCODE instruction is selected.

When the TAP controller is put into the SHIFT-DR state, and CLK  is pulsed 
while enabled by DBGTCKEN , the contents of the ID register are clocked out 
of DBGTDO.



Debug in Depth

D-6 © Copyright ARM Limited 1999. All rights reserved. ARM DDI 0084E

D.3 Instruction register

The instruction register is 4 bits in length. 

There is no parity bit.

The fixed value 0001 is loaded into the instruction register during the CAPTURE-IR 
controller state.
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D.4 Public instructions

Table D-1 gives the public instructions.

In the following descriptions, the ARM7TDMI-S samples DBGTDI  and DBGTMS on 
the rising edge of CLK with DBGTCKEN HIGH.

D.4.1 SCAN_N (0010)

The SCAN_N instruction connects the scan path select register between DBGTDI  and 
DBGTDO:

• In the CAPTURE-DR state, the fixed value 1000 is loaded into the register.

• In the SHIFT-DR state, the ID number of the desired scan path is shifted into the 
scan path select register.

• In the UPDATE-DR state, the scan register of the selected scan chain is 
connected between DBGTDI  and DBGTDO, and remains connected until a 
subsequent SCAN_N instruction is issued.

• On reset, scan chain 0 is selected by default.

The scan path select register is 4 bits long in this implementation, although no finite 
length is specified.

Table D-1 Public instructions

Instruction Binary code

SCAN_N 0010

INTEST 1100

IDCODE 1110

BYPASS 1111

RESTART 0100
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D.4.2 INTEST (1100)

The INTEST instruction places the selected scan chain in test mode:

• The INTEST instruction connects the selected scan chain between DBGTDI  and 
DBGTDO.

• When the INTEST instruction is loaded into the instruction register, all the scan 
cells are placed in their test mode of operation.

• In the CAPTURE-DR state, the value of the data applied from the core logic to 
the output scan cells, and the value of the data applied from the system logic to 
the input scan cells is captured.

• In the SHIFT-DR state, the previously-captured test data is shifted out of the 
scan chain via the DBGTDO pin, while new test data is shifted in via the 
DBGTDI  pin.

Single-step operation of the core is possible using the INTEST instruction.

D.4.3 IDCODE (1110)

The IDCODE instruction connects the device identification code register (or 
ID register) between DBGTDI  and DBGTDO. The ID register is a 32-bit register that 
allows the manufacturer, part number, and version of a component to be read through 
the TAP. See ARM7TDMI-S device identification (ID) code register on page D-10 for 
the details of the ID register format.

When the IDCODE instruction is loaded into the instruction register, all the scan cells 
are placed in their normal (system) mode of operation:

• In the CAPTURE-DR state, the device identification code is captured by the ID 
register.

• In the SHIFT-DR state, the previously captured device identification code is 
shifted out of the ID register via the DBGTDO pin, while data is shifted into the 
ID register via the DBGTDI  pin.

• In the UPDATE-DR state, the ID register is unaffected.
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D.4.4 BYPASS (1111)

The BYPASS instruction connects a 1-bit shift register (the bypass register) between 
DBGTDI  and DBGTDO.

When the BYPASS instruction is loaded into the instruction register, all the scan cells 
assume their normal (system) mode of operation. The BYPASS instruction has no 
effect on the system pins:

• In the CAPTURE-DR state, a logic 0 is captured the bypass register.

• In the SHIFT-DR state, test data is shifted into the bypass register via DBGTDI , 
and shifted out via DBGTDO after a delay of one TCK  cycle. The first bit to 
shift out is a zero. 

• The bypass register is not affected in the UPDATE-DR state.

All unused instruction codes default to the BYPASS instruction.

D.4.5 RESTART (0100)

The RESTART instruction is used to restart the processor on exit from debug state. The 
RESTART instruction connects the bypass register between DBGTDI  and DBGTDO, 
and the TAP controller behaves as if the BYPASS instruction had been loaded. 

The processor exits debug state when the RUN-TEST/IDLE state is entered.
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D.5 Test data registers

There are five test data registers which may connect between DBGTDI  and DBGTDO: 

• bypass register

• id code register

• instruction register

• scan path select register

• scan chain 1

• scan chain 2.

In the following descriptions, data is shifted during every CLK cycle when 
DBGTCKEN enable is HIGH.

D.5.1 Bypass register

Purpose Bypasses the device during scan testing by providing a path 
between DBGTDI  and DBGTDO.

Length 1 bit.

Operating mode When the BYPASS instruction is the current instruction in the 
instruction register, serial data is transferred from DBGTDI  to 
DBGTDO in the SHIFT-DR state with a delay of one CLK cycle 
enabled by DBGTCKEN .
There is no parallel output from the bypass register.
A logic 0 is loaded from the parallel input of the bypass register in 
the CAPTURE-DR state.

D.5.2 ARM7TDMI-S device identification (ID) code register

Purpose Reads the 32-bit device identification code. No programmable 
supplementary identification code is provided.

Length 32 bits. The format of the ID register is as follows:

The default device identification code is 0x0f1f0f0f.

Operating mode When the IDCODE instruction is current, the ID register is 
selected as the serial path between DBGTDI  and DBGTDO.

There is no parallel output from the ID register.

011112272831

1Manufacturer IdentityPart NumberVersion
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The 32-bit device identification code is loaded into the ID register 
from its parallel inputs during the CAPTURE-DR state.

D.5.3 Instruction register

Purpose Changes the current TAP instruction.

Length 4 bits.

Operating mode In the SHIFT-IR state, the instruction register is selected as the 
serial path between DBGTDI  and DBGTDO.

During the CAPTURE-IR state, the binary value 0001 is loaded 
into this register. This value is shifted out during SHIFT-IR (least 
significant bit first), while a new instruction is shifted in (least 
significant bit first).

During the UPDATE-IR state, the value in the instruction register 
becomes the current instruction. 

On reset, IDCODE becomes the current instruction.

D.5.4 Scan path select register

Purpose Changes the current active scan chain.

Length 4 bits.

Operating mode  SCAN_N as the current instruction in the SHIFT-DR state selects 
the scan path select register as the serial path between DBGTDI  
and DBGTDO.

During the CAPTURE-DR state, the value 1000 binary is loaded 
into this register. This value is loaded out during SHIFT-DR (least 
significant bit first), while a new value is loaded in (least 
significant bit first). During the UPDATE-DR state, the value in 
the register selects a scan chain to become the currently active 
scan chain. All further instructions such as INTEST then apply to 
that scan chain.

The currently selected scan chain changes only when a SCAN_N 
instruction is executed, or when a reset occurs. On reset, scan 
chain 0 is selected as the active scan chain.
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Table D-2 shows the scan chain number allocation.

Note

* When selected, all reserved scan chains scan out zeros.

D.5.5 Scan chains 1 and 2

The scan chains allow serial access to the core logic, and to the EmbeddedICE hardware 
for programming purposes. Each scan chain cell is simple, and comprises a serial 
register and a multiplexor. 

The scan cells perform three basic functions:

• capture

• shift

• update.

For input cells, the capture stage involves copying the value of the system input to the 
core into the serial register. During shift, this value is output serially. The value applied 
to the core from an input cell is either the system input, or the contents of the parallel 
register (loads from the shift register after UPDATE-DR state) under multiplexor 
control.

For output cells, capture involves placing the value of a core output into the serial 
register. During shift, this value is serially output as before. The value applied to the 
system from an output cell is either the core output, or the contents of the serial register.

All the control signals for the scan cells are generated internally by the TAP controller. 
The action of the TAP controller is determined by current instruction and the state of 
the TAP state machine.

Table D-2 Scan chain number allocation

Scan chain number Function

0 Reserved*

1 Debug

2 EmbeddedICE programming

3 Reserved*

4 Reserved*

8 Reserved*
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Scan chain 1

Purpose: Scan chain 1 is used for communication between the debugger and 
the ARM7TDMI-S core. It is used to read and write data, and to 
scan instructions into the pipeline. The SCAN_N TAP instruction. 
can be used to select scan chain 1.

Length 33 bits, 32 bits a for the data value, and 1 bit for the scan cell on 
the DBGBREAK  core input.

Scan chain order: From DBGTDI  to DBGTDO, the ARM7TDMI-S data bits, bits 
0 to 31, then the 33rd bit, the DBGBREAK  scan cell.

Scan chain 1, bit 33 serves three purposes:

• Under normal INTEST test conditions, it allows a known value to be scanned 
into the DBGBREAK  input. 

• While debugging, the value placed in the 33rd bit determines whether the 
ARM7TDMI-S synchronizes back to system speed before executing the 
instruction. See System speed access on page D-23 for further details.

• After the ARM7TDMI-S has entered debug state, the value of the 33rd bit on the 
first occasion that it is captured and scanned out tells the debugger whether the 
core entered debug state from a breakpoint (bit 33 LOW), or from a watchpoint 
(bit 33 HIGH).

Scan chain 2

Purpose: Scan chain 2 allows access to the EmbeddedICE registers. To do 
this, scan chain 2 must be selected using the SCAN_N TAP 
controller instruction, and then the TAP controller must be put in 
INTEST mode.

Length 38 bits. 

Scan chain order: From DBGTDI  to DBGTDO, the read/write bit, the register 
address bits, bits 4 to 0, then the data bits, bits 0 to 31.

No action occurs during CAPTURE-DR. 

During SHIFT-DR, a data value is shifted into the serial register. Bits 32 to 36 specify 
the address of the EmbeddedICE register to be accessed. 

During UPDATE-DR, this register is either read or written depending on the value of 
bit 37 (0 = read, 1 = write). Refer to Figure D-5 on page D-28 for further details.
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D.6 ARM7TDMI-S core clock domains

The ARM7TDMI-S has a single clock, CLK , that is qualified by two clock enables:

• CLKEN controls access to the memory system

• DBGTCKEN  controls debug operations.

During normal operation, CLKEN conditions CLK to clock the core. When the 
ARM7TDMI-S is in debug state, DBGTCKEN  conditions CLK to clock the core.
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D.7 Determining the core and system state

When the ARM7TDMI-S is in debug state, you examine the core and system state by 
forcing the load and store multiples into the instruction pipeline.

Before you can examine the core and system state, the debugger must determine 
whether the processor entered debug from Thumb state or ARM state, by examining bit 
4 of the EmbeddedICE debug status register. When bit 4 is HIGH, the core has entered 
debug from Thumb state, when bit 4 is LOW the core has entered debug entered from 
ARM state.

D.7.1 Determining the core state

When the processor has entered debug state from Thumb state, the simplest course of 
action is for the debugger to force the core back into ARM state. The debugger can then 
execute the same sequence of instructions to determine the processor state.

To force the processor into ARM state, execute the following sequence of Thumb 
instructions on the core:
STR R0, [R0] ; Save R0 before use

MOV R0, PC ; Copy PC into R0

STR R0, [R0] ; Now save the PC in R0

BX PC ; Jump into ARM state

MOV R8, R8 ; NOP

MOV R8, R8 ; NOP

Note

Because all Thumb instructions are only 16 bits long, the simplest course of action, 
when shifting scan chain 1, is to repeat the instruction. For example, the encoding for 
BX R0  is 0x4700, so when 0x47004700 shifts into scan chain 1, the debugger does not 
have to keep track of the half of the bus on which the processor expects to read the data.

The sequences of ARM instructions below can be used to determine the processor’s 
state.

With the processor in the ARM state, typically the first instruction to execute would be:
STM R0, {R0-R15}
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This instruction causes the contents of the registers to appear on the data bus. You can 
then sample and shift out these values.

Note

The above use of r0 as the base register for the STM is only for illustration, and you can 
use any register.

After you have determined the values in the current bank of registers, you may wish to 
access the banked registers. To do this, you must change mode. Normally, a mode 
change can occur only if the core is already in a privileged mode. However, while in 
debug state, a mode change from one mode into any other mode may occur. 

The debugger must restore the original mode before exiting debug state.For example, if 
the debugger had been requested to return the state of the user mode registers and FIQ 
mode registers, and debug state was entered in supervisor mode, the instruction 
sequence could be:
STM R0, {R0-R15}; Save current registers

MRS R0, CPSR

STR R0, R0; Save CPSR to determine current mode

BIC R0, 0x1F; Clear mode bits

ORR R0, 0x10; Select user mode

MSR CPSR, R0; Enter USER mode

STM R0, {R13,R14}; Save register not previously visible

ORR R0, 0x01; Select FIQ mode

MSR CPSR, R0; Enter FIQ mode

STM R0, {R8-R14}; Save banked FIQ registers

All these instructions execute at debug speed. Debug speed is much slower than system 
speed. This is because between each core clock, 33 clocks occur in order to shift in an 
instruction, or shift out data. Executing instructions this slowly is acceptable for 
accessing the core state because the ARM7TDMI-S is fully static. However, you cannot 
use this method for determining the state of the rest of the system.

While in debug state, only the following instructions can be scanned into the instruction 
pipeline for execution:

• all data processing operations, except TEQP

• all load, store, load multiple, and store multiple instructions

• MSR and MRS.
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D.7.2 Determining system state

In order to meet the dynamic timing requirements of the memory system, any attempt 
to access system state must occur with the clock qualified by CLKEN . To perform a 
memory access, CLKEN  must be used to force the ARM7TDMI-S to run in normal 
operating mode. This is controlled by bit 33 of scan chain 1.

An instruction placed in scan chain 1 with bit 33, the DBGBREAK  bit, LOW executes 
at debug speed. To execute an instruction at system speed, the instruction prior to it 
must be scanned into scan chain 1 with bit 33 set HIGH.

After the system speed instruction has scanned into the data bus and clocked into the 
pipeline, the RESTART instruction must be loaded into the TAP controller. RESTART 
causes the ARM7TDMI-S to:

1. Switch automatically to CLKEN control.

2. Execute the instruction at system speed.

3. Reenter debug state.

When the instruction has completed, DBGACK  is HIGH, and the core reverts to 
DBGTCKEN control. It is now possible to select INTEST in the TAP controller, and 
resume debugging.

The debugger must look at both DBGACK  and TRANS[1:0] in order to determine 
whether a system speed instruction has completed. In order to access memory, the 
ARM7TDMI-S drives both bits of TRANS[1:0] LOW after it has synchronized back to 
system speed. This transition is used by the memory controller to arbitrate whether the 
ARM7TDMI-S can have the bus in the next cycle. If the bus is not available, the 
ARM7TDMI-S may have its clock stalled indefinitely. The only way to determine 
whether the memory access has completed is to examine the state of both TRANS[1:0] 
and DBGACK . When both are HIGH, the access has completed.

The debugger usually uses EmbeddedICE to control debugging, and so the state of 
TRANS[1:0], and DBGACK  can be determined by reading the EmbeddedICE status 
register. Refer to The debug status register on page D-36 for more details.

The state of the system memory can be fed back to the debug host by using system speed 
load multiples and debug speed store multiples.
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There are restrictions on which instructions may have the bit 33 set. The valid 
instructions on which to set this bit are:

• loads

• stores

• load multiple

• store multiple.

See also Exit from debug state, below. 

When the ARM7TDMI-S returns to debug state after a system speed access, bit 33 of 
scan chain 1 is set HIGH. The state of bit 33 gives the debugger information about why 
the core entered debug state the first time this scan chain is read.

D.7.3 Exit from debug state

Leaving debug state involves:

• restoring the ARM7TDMI-S internal state

• causing the execution of a branch to the next instruction

• returning to normal operation.

After restoring the internal state, a branch instruction must be loaded into the pipeline. 
See Behavior of the program counter during debug on page D-21 for details on 
calculating the branch.

Bit 33 of scan chain 1 forces the ARM7TDMI-S to resynchronize back to CLKEN 
clock enable. The penultimate instruction of the debug sequence is scanned in with bit 
33 set HIGH. The final instruction of the debug sequence is the branch, which is 
scanned in with bit 33 LOW. The core is then clocked to load the branch instruction into 
the pipeline, and the RESTART instruction is selected in the TAP controller.

When the state machine enters the RUN-TEST/IDLE state, the scan chain reverts back 
to system mode. The ARM7TDMI-S then resumes normal operation, fetching 
instructions from memory. This delay, until the state machine is in the RUN-TEST/
IDLE state, allows conditions to be set up in other devices in a multiprocessor system 
without taking immediate effect. When the state machine enters the RUN-TEST/IDLE 
state, all the processors resume operation simultaneously.

The function of DBGACK  is to inform the rest of the system when the ARM7TDMI-S 
is in debug state. This information can be used to inhibit peripherals, such as watchdog 
timers, that have real-time characteristics. Also, DBGACK  can mask out memory 
accesses caused by the debugging process. For example, when the ARM7TDMI-S 
enters debug state after a breakpoint, the instruction pipeline contains the breakpointed 
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instruction and two other instructions that have been prefetched. On entry to debug state 
the pipeline is flushed. On exit from debug state the pipeline must therefore revert to its 
previous state. 

As a result of the debugging process, more memory accesses occur than would be 
expected normally. DBGACK  can inhibit any system peripheral that may be sensitive 
to the number of memory accesses. 

For example, a peripheral that simply counts the number of memory cycles should 
return the same answer after a program has been run both with and without debugging. 
Figure D-3 shows the behavior of the ARM7TDMI-S on exit from the debug state.

Figure D-3 Debug exit sequence

Figure D-2 on page D-4 shows that the final memory access occurs in the cycle after 
DBGACK  goes HIGH. This is the point at which the cycle counter should be disabled. 
Figure D-3 shows that the first memory access that the cycle counter has not previously 
seen occurs in the cycle after DBGACK  goes LOW. This is the point at which to 
re-enable the counter.

Note

When a system speed access from debug state occurs, the ARM7TDMI-S temporarily 
drops out of debug state, and so DBGACK  can go LOW. If there are peripherals that 
are sensitive to the number of memory accesses, they must be led to believe that the 
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ARM7TDMI-S is still in debug state. You can do this by programming the 
EmbeddedICE control register to force the value on DBGACK  to be HIGH. See The 
debug status register on page D-36 for more details.
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D.8 Behavior of the program counter during debug

The debugger must keep track of what happens to the PC, so that the ARM7TDMI-S 
can be forced to branch back to the place at which program flow was interrupted by 
debug. Program flow may be interrupted by any of the following:

• a breakpoint

• a watchpoint

• a watchpoint when another exception occurs

• a debug request

• a system speed access.

D.8.1 Breakpoints

Entry into debug state from a breakpoint advances the PC by four addresses, or 16 bytes. 
Each instruction executed in debug state advances the PC by one address, or 4 bytes. 

The normal way to exit from debug state after a breakpoint is to remove the breakpoint, 
and branch back to the previously-breakpointed address.

For example, if the ARM7TDMI-S entered debug state from a breakpoint set on a given 
address and two debug speed instructions were executed, a branch of –7 addresses must 
occur (4 for debug entry, plus 2 for the instructions, plus 1 for the final branch).

The following sequence shows the data scanned into scan chain 1, most significant bit 
first. The value of the first digit goes to the DBGBREAK  bit, and then the instruction 
data into the remainder of scan chain 1:
0 E0802000; ADD R2, R0, R0

1 E1826001; ORR R6, R2, R1

0 EAFFFFF9; B -7 (2’s complement)

After the ARM7TDMI-S enters debug state, it must execute a minimum of two 
instructions before the branch, although these may both be NOPs (MOV R0, R0 ). For 
small branches, you could replace the final branch with a subtract, with the PC as the 
destination (SUB PC, PC, #28  in the above example).

D.8.2 Watchpoints

The return to program execution after entry to debug state from a watchpoint is done in 
the same way as the procedure described in Breakpoints above.

Debug entry adds four addresses to the PC, and every instruction adds one address. The 
difference from breakpoint is that the instruction that caused the watchpoint has 
executed, and the program should return to the next instruction.
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D.8.3 Watchpoint with another exception

If a watchpointed access simultaneously causes a data abort, the ARM7TDMI-S enters 
debug state in abort mode. Entry into debug is held off until the core changes into abort 
mode, and has fetched the instruction from the abort vector.

A similar sequence follows when an interrupt, or any other exception, occurs during a 
watchpointed memory access. The ARM7TDMI-S enters debug state in the mode of the 
exception. The debugger must check to see whether an exception has occurred by 
examining the current and previous mode (in the CPSR and SPSR), and the value of the 
PC. When an exception has taken place, the user should be given the choice of servicing 
the exception before debugging.

Entry to debug state when an exception has occurred causes the PC to be incremented 
by three instructions rather than four, and this must be considered in return branch 
calculation when exiting debug state. For example, suppose that an abort has occurred 
on a watchpointed access and ten instructions had been executed to determine this 
eventuality. You could use the following sequence to return to program execution.
0 E1A00000; MOV R0, R0

1 E1A00000; MOV R0, R0

0 EAFFFFF0; B -16

This code forces a branch back to the abort vector, causing the instruction at that 
location to be refetched and executed.

Note

After the abort service routine, the instruction that caused the abort and watchpoint will 
be refetched and executed. This triggers the watchpoint again, and the ARM7TDMI-S 
will reenter debug state.

D.8.4 Debug request

Entry into debug state via a debug request is similar to a breakpoint. However, unlike a 
breakpoint, the last instruction has completed execution and so must not be refetched 
on exit from debug state. Therefore you can assume that entry to debug state adds three 
addresses to the PC, and every instruction executed in debug state adds one address.

For example, suppose that the user has invoked a debug request, and decides to return 
to program execution straight away. You could use the following sequence:
0 E1A00000; MOV R0, R0

1 E1A00000; MOV R0, R0

0 EAFFFFFA; B -6

This code restores the PC, and restarts the program from the next instruction.
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D.8.5 System speed access

When a system speed access is performed during debug state, the value of the PC 
increases by three addresses. System speed instructions access the memory system, and 
so it is possible for aborts to take place. If an abort occurs during a system speed 
memory access, the ARM7TDMI-S enters abort mode before returning to debug state.

This scenario is similar to an aborted watchpoint, but the problem is much harder to fix 
because the abort was not caused by an instruction in the main program, and so the PC 
does not point to the instruction that caused the abort. An abort handler usually looks at 
the PC to determine the instruction that caused the abort, and hence the abort address. 
In this case, the value of the PC is invalid, but because the debugger can determine 
which location was being accessed, the debugger can be written to help the abort 
handler fix the memory system.

D.8.6 Summary of return address calculations

The calculation of the branch return address is as follows:

• for normal breakpoint and watchpoint, the branch is:

- (4 + N + 3S)

• for entry through debug request (DBGRQ), or watchpoint with exception, the 
branch is:

- (3 + N + 3S)

where N is the number of debug speed instructions executed (including the final 
branch), and S is the number of system speed instructions executed.
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D.9 Priorities and exceptions

When a breakpoint or a debug request occurs, the normal flow of the program is 
interrupted. Debug therefore can be treated as another type of exception. The interaction 
of the debugger with other exceptions is described in Behavior of the program counter 
during debug on page D-21. This section covers the priorities.

D.9.1 Breakpoint with prefetch abort

When a breakpointed instruction fetch causes a prefetch abort, the abort is taken and the 
breakpoint is disregarded. Normally, prefetch aborts occur when, for example, an 
access is made to a virtual address that does not physically exist, and the returned data 
is therefore invalid. In such a case, the normal action of the operating system is to swap 
in the page of memory, and to return to the previously-invalid address. This time, when 
the instruction is fetched, and providing the breakpoint is activated (it may be 
data-dependent), the ARM7TDMI-S enters debug state.

The prefetch abort, therefore, takes higher priority than the breakpoint.

D.9.2 Interrupts

When the ARM7TDMI-S enters debug state, interrupts are automatically disabled.

If an interrupt is pending during the instruction prior to entering debug state, the 
ARM7TDMI-S enters debug state in the mode of the interrupt. On entry to debug state, 
the debugger cannot assume that the ARM7TDMI-S is in the mode expected by the 
user’s program. The ARM7TDMI-S must check the PC, the CPSR, and the SPSR to 
determine accurately the reason for the exception.

Debug, therefore, takes higher priority than the interrupt, but the ARM7TDMI-S does 
remember that an interrupt has occurred.

D.9.3 Data aborts

When a data abort occurs on a watchpointed access, the ARM7TDMI-S enters debug 
state in abort mode. The watchpoint, therefore, has higher priority than the abort, but 
the ARM7TDMI-S remembers that the abort happened.
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D.10 Scan interface timing

Figure D-4 provides general scan timing information.

Figure D-4 General scan timing

D.10.1 Scan chain 1 cells

The ARM7TDMI-S provides data for scan chain 1 cells as shown in Table D-3.

CLK

DBGTCKEN

DBGTMS
DBGTDI

DBGTDO

tistcken
tihtcken

tistctl
tihtctl

tovtdo
tohtdo

Table D-3 Scan chain 1 cells

Number Signal Type

1 DATA[0] Input/output

2 DATA[1] Input/output

3 DATA[2] Input/output

4 DATA[3] Input/output

5 DATA[4] Input/output

6 DATA[5] Input/output

7 DATA[6] Input/output

8 DATA[7] Input/output

9 DATA[8] Input/output

10 DATA[9] Input/output

11 DATA[10] Input/output
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12 DATA[11] Input/output

13 DATA[12] Input/output

14 DATA[13] Input/output

15 DATA[14] Input/output

16 DATA[15] Input/output

17 DATA[16] Input/output

18 DATA[17] Input/output

19 DATA[18] Input/output

20 DATA[19] Input/output

21 DATA[20] Input/output

22 DATA[21] Input/output

23 DATA[22] Input/output

24 DATA[23] Input/output

25 DATA[24] Input/output

26 DATA[25] Input/output

27 DATA[26] Input/output

28 DATA[27] Input/output

29 DATA[28] Input/output

30 DATA[29] Input/output

31 DATA[30] Input/output

32 DATA[31] Input/output

33 DBGBREAK Input

Table D-3 Scan chain 1 cells (continued)

Number Signal Type
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D.11 The watchpoint registers

The two watchpoint units, known as Watchpoint 0 and Watchpoint 1, each contain three 
pairs of registers:

• address value and address mask

• data value and data mask

• control value and control mask.

Each register is independently programmable, and has a unique address. The function 
and mapping of the resisters is shown in Table D-4.

Table D-4 Function and mapping of EmbeddedICE registers

Address Width Function

00000 3 Debug control

00001 5 Debug status

00100 6 Debug comms control register

00101 32 Debug comms data register

01000 32 Watchpoint 0 address value

01001 32 Watchpoint 0 address mask

01010 32 Watchpoint 0 data value

01011 32 Watchpoint 0 data mask

01100 9 Watchpoint 0 control value

01101 8 Watchpoint 0 control mask

10000 32 Watchpoint 1 address value

10001 32 Watchpoint 1 address mask

10010 32 Watchpoint 1 data value

10011 32 Watchpoint 1 data mask

10100 9 Watchpoint 1 control value

10101 8 Watchpoint 1 control mask
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D.11.1 Programming and reading watchpoint registers

A watchpoint register is programmed by shifting data into the EmbeddedICE scan chain 
(scan chain 2). The scan chain is a 38-bit shift register comprising:

• a 32-bit data field

• a 5-bit address field

• a read/write bit.

This setup is shown in Figure D-5.

Figure D-5 EmbeddedICE block diagram

The data to be written is shifted into the 32-bit data field. The address of the register is 
shifted into the 5-bit address field. A 1 is shifted into the read/write bit.

A register is read by shifting its address into the address field and by shifting a 0 into 
the read/write bit. The 32-bit data field is ignored.

The register addresses are shown in Table D-4 on page D-27.

Note

A read or write actually takes place when the TAP controller enters the UPDATE-DR 
state.
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D.11.2 Using the data and address mask registers

For each value register in a register pair, there is a mask register of the same format. 
Setting a bit to 1 in the mask register has the effect of making the corresponding bit in 
the value register disregarded in the comparison.

For example, when a watchpoint is required on a particular memory location, but the 
data value is irrelevant, the data mask register can be programmed to 0xffffffff (all bits 
set to 1) to ignore the entire data bus field.

Note

The mask is an XNOR mask rather than a conventional AND mask. When a mask bit 
is set to 1, the comparator for that bit position always matches, irrespective of the value 
register or the input value.

Setting the mask bit to 0 means that the comparator matches only if the input value 
matches the value programmed into the value register.

D.11.3 The control registers

The control value and control mask registers are mapped identically in the lower eight 
bits, as shown in Figure D-6.

Figure D-6 Watchpoint control value and mask format

Bit 8 of the control value register is the ENABLE  bit and cannot be masked.

The bits have the following functions:

WRITE  compares against the write signal from the core in order to detect 
the direction of bus activity. WRITE  is 0 for a read cycle, and 1 
for a write cycle.

SIZE[1:0]  compares against the SIZE[1:0]  signal from the core in order to 
detect the size of bus activity.

The encoding is shown in Table D-5 on page D-30.

ENABLE RANGE CHAIN DBGEXT PROT[1] PROT[0] SIZE[0] WRITE

012345678

SIZE[1]



Debug in Depth

D-30 © Copyright ARM Limited 1999. All rights reserved. ARM DDI 0084E

PROT[0] is used to detect whether the current cycle is an instruction fetch 
(PROT[0] = 0) or a data access (PROT[0] = 1).

PROT[1] is used to compare against the not translate signal from the core in 
order to distinguish between user mode (PROT[1] = 0) and non-
user mode (PROT[1] = 1) accesses.

DBGEXT[1:0] is an external input to EmbeddedICE that allows the watchpoint 
to be dependent upon some external condition. 
The DBGEXT  input for Watchpoint 0 is labelled DBGEXT[0] .
The DBGEXT  input for Watchpoint 1 is labelled DBGEXT[1] .

CHAIN can be connected to the chain output of another watchpoint in 
order to implement, for example, debugger requests of the form 
breakpoint on address YYY only when in process 
XXX.

In the ARM7TDMI-S EmbeddedICE, the CHAINOUT  output of 
Watchpoint 1 is connected to the CHAIN  input of Watchpoint 0. 

The CHAINOUT  output is derived from a register. The address/
control field comparator drives the write enable for the register. 
The input to the register is the value of the data field comparator.

The CHAINOUT  register is cleared when the control value 
register is written or when nTRST is LOW.

RANGE can be connected to the range output of another watchpoint 
register.

In the ARM7TDMI-S EmbeddedICE, the DBGRNG output of 
Watchpoint 1 is connected to the RANGE input of Watchpoint 0. 
Connection allows the two watchpoints to be coupled for 
detecting conditions that occur simultaneously, such as for range 
checking.

Table D-5 SIZE[1:0] signal encoding

bit 1 bit 0 Data size

0 0 byte

0 1 halfword

1 0 word

1 1 (reserved)
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ENABLE When a watchpoint match occurs, the internal DBGBREAK  
signal is asserted only when the ENABLE  bit is set. This bit exists 
only in the value register. It cannot be masked.

For each of the bits 7:0 in the control value register, there is a corresponding bit in the 
control mask register. These bits remove the dependency on particular signals.



Debug in Depth

D-32 © Copyright ARM Limited 1999. All rights reserved. ARM DDI 0084E

D.12 Programming breakpoints

Breakpoints are classified as hardware breakpoints or software breakpoints:

• Hardware breakpoints typically monitor the address value and can be set in any 
code, even in code that is in ROM or code that is self-modifying.

• Software breakpoints (see page D-33) monitor a particular bit pattern being 
fetched from any address. One EmbeddedICE watchpoint can therefore be used 
to support any number of software breakpoints.

Software breakpoints can normally be set only in RAM because a special bit 
pattern chosen to cause a software breakpoint has to replace the instruction.

D.12.1 Hardware breakpoints

To make a watchpoint unit cause hardware breakpoints (on instruction fetches):

1. Program its address value register with the address of the instruction to be 
breakpointed.

2. For an ARM-state breakpoint, program bits [1:0] of the address mask register to 
11. For a breakpoint in Thumb state, program bits [1:0] of the address mask 
register to 01.

3. Program the data value register only when you require a data-dependent 
breakpoint, that is only when you need to match the actual instruction code 
fetched as well as the address. If the data value is not required, program the data 
mask register to 0xffffffff (all bits to 1). Otherwise program it to 0x00000000.

4. Program the control value register with PROT[0] = 0.

5. Program the control mask register with PROT[0] = 0.

6. When you need to make the distinction between user and non-user mode 
instruction fetches, program the PROT[1] value, and mask bits appropriately.

7. If required, program the DBGEXT, RANGE, and CHAIN  bits in the same way.

8. Program the mask bits for all unused control values to 2.
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D.12.2 Software breakpoints

To make a watchpoint unit cause software breakpoints (on instruction fetches of a 
particular bit pattern):

1. Program its address mask register to 0xffffffff (all bits set to 1) so that the 
address is disregarded.

2. Program the data value register with the particular bit pattern that has been 
chosen to represent a software breakpoint.

If you are programming a Thumb software breakpoint, repeat the 16-bit pattern 
in both halves of the data value register. For example, if the bit pattern is 0xdfff, 
program 0xdfffdfff. When a 16-bit instruction is fetched, EmbeddedICE 
compares only the valid half of the data bus against the contents of the data value 
register. In this way, you can use a single watchpoint register to catch software 
breakpoints on both the upper and lower halves of the data bus.

3. Program the data mask register to 0x00000000.

4. Program the control value register with PROT[0] = 0.

5. Program the control mask register with PROT[0] = 0, and all other bits to 1.

6. If you wish to make the distinction between user and non-user mode instruction 
fetches, program the PROT[1] bit in the control value and control mask registers 
accordingly.

7. If required, program the DBGEXT, RANGE, and CHAIN  bits in the same way.

Note

There is no need to program the address value register.

Setting the breakpoint

To set the software breakpoint:

1. Read the instruction at the desired address, and store it away.

2. Write the special bit pattern representing a software breakpoint at the address.

Clearing the breakpoint

To clear the software breakpoint, restore the instruction to the address.
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D.13 Programming watchpoints

To make a watchpoint unit cause watchpoints (on data accesses):

1. Program its address value register with the address of the data access to be 
watchpointed.

2. Program the address mask register to 0x00000000.

3. Program the data value register only if you require a data-dependent watchpoint, 
that is, only if you need to match the actual data value read or written as well as 
the address. If the data value is irrelevant, program the data mask register to 
0xffffffff (all bits set to 1). Otherwise program the data mask register to 
0x00000000.

4. Program the control value register with PROT[0] = 1, WRITE = 0 for a read or 
WRITE  = 1 for a write, SIZE[1:0] with the value corresponding to the 
appropriate data size.

5. Program the control mask register with PROT[0] = 0, WRITE  = 0, SIZE[1:0] = 
0, and all other bits to 1. You may set WRITE  or SIZE[1:0] to 1 when both 
reads and writes or data size accesses are to be watchpointed respectively.

6. If you wish to make the distinction between user and non-user mode data 
accesses, program the PROT[1] bit in the control value and control mask 
registers accordingly.

7. If required, program the DBGEXT, RANGE, and CHAIN  bits in the same way.

Note

The above are examples of how to program the watchpoint register to generate 
breakpoints and watchpoints. Many other ways of programming the registers are 
possible. For instance, you can provide simple range breakpoints by setting one or more 
of the address mask bits.
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D.14 The debug control register

The debug control register is 3 bits wide. Writing control bits occurs during a register 
write access (with the read/write bit HIGH). Reading control bits occurs during a 
register read access (with the read/write bit LOW).

Figure D-7 shows the function of each bit in this register.

Figure D-7 Debug control register format

Bit 2 If bit 2 (INTDIS ) is asserted, the interrupt signals to the processor are 
inhibited. So, both IRQ and FIQ are disabled when the processor is in 
debug state (DBGACK =1), or when INTDIS  is forced.

Table D-6 shows interrupt signal control.

Bits 1:0 These bits allow the values on DBGRQ and DBGACK  to be forced.

As shown in Figure D-9 on page D-37, the value stored in bit 1 of the 
control register is synchronized and then ORed with the external 
DBGRQ before being applied to the processor.

In the case of DBGACK , the value of DBGACK  from the core is ORed 
with the value held in bit 0 to generate the external value of DBGACK  
seen at the periphery of the ARM7TDMI-S. This allows the debug 
system to signal to the rest of the system that the core is still being 
debugged even when system-speed accesses are being performed (in 
which case the internal DBGACK  signal from the core is LOW).

2 1 0

INTDIS DBGRQ BDGACK

Table D-6 Interrupt signal control

DBGACK INTDIS Interrupts

0 0 permitted

1 x inhibited

x 1 inhibited
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D.15 The debug status register

The debug status register is 5 bits wide. If it is accessed for a write (with the read/write 
bit set HIGH), the status bits are written. If it is accessed for a read (with the read/write 
bit LOW), the status bits are read. The format of the debug status register is shown in 
Figure D-8.

Figure D-8 Debug status register format

The function of each bit in this register is as follows:

Bit 4 allows TBIT  to be read. This enables the debugger to determine 
the processor state, and therefore which instructions to execute.

Bit 3 allows the state of the TRANS[1] signal from the core to be read. 
This state allows the debugger to determine whether a memory 
access from the debug state has completed.

Bit 2 allows the state of the core interrupt enable signal (IFEN ) to be 
read. 

Bits 1:0 allow the values on the synchronized versions of DBGRQ and 
DBGACK  to be read. 

The structure of the debug control and status registers is shown in Figure D-9 on 
page D-37.

4 3 2 1 0

TBIT TRANS[1] IFEN DBGRQ DBGACK
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Figure D-9 Debug control and status register structure
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D.16 Coupling breakpoints and watchpoints

Watchpoint units 1 and 0 can be coupled together using the CHAIN  and RANGE 
inputs. The use of CHAIN enables Watchpoint 0 to be triggered only if Watchpoint 1 
has previously matched. The use of RANGE enables simple range checking to be 
performed by combining the outputs of both watchpoints.

D.16.1 Breakpoint and watchpoint coupling example 

Let:

Av[31:0] be the value in the address value register

Am[31:0] be the value in the address mask register

A[31:0] be the address bus from the ARM7TDMI-S

Dv[31:0] be the value in the data value register

Dm[31:0] be the value in the data mask register

D[31:0] be the data bus from the ARM7TDMI-S

Cv[8:0] be the value in the control value register

Cm[7:0] be the value in the control mask register

C[9:0] be the combined control bus from the ARM7TDMI-S, other watchpoint 
registers, and the DBGEXT  signal.

CHAINOUT signal

The CHAINOUT  signal is derived as follows:
WHEN (({Av[31:0],Cv[4:0]} XNOR {A[31:0],C[4:0]})  OR 
{Am[31:0],Cm[4:0]} == 0xFFFFFFFFF)

CHAINOUT = ((({D v[31:0],C v[6:4]} XNOR {D[31:0],C[7:5]}) OR 
{D m[31:0],C m[7:5]}) == 0x7FFFFFFFF) 

The CHAINOUT  output of watchpoint register 1 provides the CHAIN  input to 
Watchpoint 0. This CHAIN  input allows for quite complicated configurations of 
breakpoints and watchpoints.

Note

There is no CHAIN  input to Watchpoint 1 and no CHAIN  output from Watchpoint 0.

Take, for example, the request by a debugger to breakpoint on the instruction at location 
YYY when running process XXX in a multiprocess system. If the current process ID is 
stored in memory, you can implement the above function with a watchpoint and 
breakpoint chained together. The watchpoint address points to a known memory 
location containing the current process ID, the watchpoint data points to the required 
process ID, and the ENABLE  bit is set to off.
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The address comparator output of the watchpoint is used to drive the write enable for 
the CHAINOUT  latch. The input to the latch is the output of the data comparator from 
the same watchpoint. The output of the latch drives the CHAIN  input of the breakpoint 
comparator. The address YYY is stored in the breakpoint register, and when the 
CHAIN  input is asserted, the breakpoint address matches, and the breakpoint triggers 
correctly.

D.16.2 DBGRNG signal

The DBGRNG signal is derived as follows:
DBGRNG = ((({A v[31:0],C v[4:0]} XNOR {A[31:0],C[4:0]}) OR 
{A m[31:0],C m[4:0]}) == 0xFFFFFFFFF) AND 
((({D v[31:0],C v[7:5]} XNOR {D[31:0],C[7:5]}) OR 
Dm[31:0],C m[7:5]}) == 0x7FFFFFFFF) 

The DBGRNG output of watchpoint register 1 provides the RANGE input to 
watchpoint register 0. This RANGE input allows two breakpoints to be coupled 
together to form range breakpoints.

Selectable ranges are restricted to being powers of 2. For example, if a breakpoint is to 
occur when the address is in the first 256 bytes of memory, but not in the first 32 bytes, 
program the watchpoint registers as follows:

For Watchpoint 1: 

1. Program Watchpoint 1 with an address value of 0x00000000 and an address 
mask of 0x0000001f. 

2. Clear the ENABLE  bit. 

3. Program all other Watchpoint 1 registers as normal for a breakpoint.

An address within the first 32 bytes causes the RANGE output to go HIGH, but 
does not trigger the breakpoint.

For Watchpoint 0:

1. Program Watchpoint 0 with an address value of 0x00000000 and an address 
mask of 0x000000ff. 

2. Set the ENABLE bit. 

3. Program the RANGE bit to match a 0. 

4. Program all other Watchpoint 0 registers as normal for a breakpoint. 

If Watchpoint 0 matches but Watchpoint 1 does not (that is the RANGE input to 
Watchpoint 0 is 0), the breakpoint is triggered.
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D.17 Disabling EmbeddedICE

You can disable EmbeddedICE by wiring the DBGEN input LOW.

When DBGEN is LOW:

• DBGBREAK  and DBGRQ are forced LOW to the core

• DBGACK  is forced LOW from the ARM7TDMI-S

• interrupts pass through to the processor uninhibited.
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D.18 EmbeddedICE timing

EmbeddedICE samples the DBGEXT[1]  and DBGEXT[0] inputs on the rising edge of 
CLK .

Refer to Chapter 7 AC Parameters for details of the required setup and hold times for 
these signals.
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action on entry 2-18
action on exit 2-18
data abort 2-23
FIQ 2-19
IRQ 2-19
priorities 2-23
vectors 2-22

External coprocessors 4-14

F
F bit 2-25

FIQ disable 2-15
F flag, CPSR 2-19
FIQ 4-8

exception 2-19
mode 2-7

FIQ mode
defined 2-19
registers D-16
See also Interrupts

Flags, condition code 2-14
Formats

big-endian 2-4
little-endian 2-4

H
Hardware breakpoints D-32
High registers

accessing from Thumb state 2-13
described 2-13

I
I bit 2-25

IRQ disable 2-15
ID register D-5, D-10
IDCODE instruction D-5, D-8, D-10, 

D-11
Identification register.  See ID register
Instruction cycle

operations 6-1
timings 6-1

Instruction pipeline 1-2
Instruction register D-6, D-8, D-9, D-10
Instruction set

ARM 1-4
ARM, summary 1-9–1-16
Thumb 1-4
Thumb, summary 1-17–1-19

Instructions
ADD 2-13
BL 2-8, 6-7
BL (ARM) 6-8
BL (Thumb) 6-8
branch 6-7
breakpointed 5-7, 5-8, D-18
BX 2-3, 6-9
BYPASS D-9
CDP 4-10
CMP 2-13
conditional 5-7
coprocessor load and store 4-11
coprocessor register transfer 4-9, 

5-16
cycle counts 6-5
cycle timings 6-1–6-30
data swap 6-20
IDCODE D-8
LDC 4-11
LDM 2-20, 5-8, 6-17, 6-19
LDR 2-20, 6-14, 6-20
LDRT 6-14
length 2-5, 6-3
long branch with link (Thumb) 6-8
MCR 4-9
MLA 6-12
MOV 2-13
MRC 4-9, 5-16
MUL 6-12, C-4
privileged 4-16
SCAN_N D-7, D-11
STC 4-11
STM 2-20, 5-8, 6-19
STR 2-20, 6-16, 6-20
STRT 6-16
SWI 6-21
SWP 2-20
system speed D-17, D-23
undefined 6-29
undefined, handling 4-15
unexecuted 6-30
width 6-3

Integer multiplication 6-12
Interface

ATPG scan B-7
boundary-scan D-5
coprocessor 4-1
debug 5-2
JTAG D-3

memory 1-3, 3-2
signals B-2

Interrupts D-24
disable bits 2-15
disable flags 2-18
disabling 2-14
enabling 2-14
latency 2-23, 2-24
latency calculation 2-24

INTEST
instruction D-8, D-11
mode D-13

IRQ 4-8
exception 2-19
mode 2-7

IRQ disable
I bit 2-15

IRQ mode
definition 2-19
See also Interrupts

J
JTAG

interface 5-2, 5-5, D-3
state machine D-4

JTAG instructions
BYPASS D-9
IDCODE D-5, D-8, D-10, D-11
INTEST D-8, D-11
public D-7
RESTART D-9, D-17, D-18
SCAN_N D-7, D-11
SCAN_N TAP D-13
SCAN_N TAP controller D-13
TAP D-11

L
LDC 4-11
LDM 5-8

instruction cycle operations 6-17
LDM instruction 2-20, 6-17, 6-19

cycle operation 6-17
LDR

instruction 2-20, 6-14, 6-20
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LDRT instruction 6-14
Link bit 6-7
Link register 2-8, 2-9
Little-endian format 2-4
Load coprocessor register 6-23
Load multiple registers.  See LDM
Load Multiple.  See LDM
Load register.  See LDR
LOCK 6-20, A-5
Low registers 2-13
LR 2-8, 2-11, 2-12

M
MCR 4-9
Memory

access cycles 2-19
access from debug state D-17, D-19
big-endian format 2-4
byte and halfword accesses 3-14
formats 2-4
interface 1-3, 3-2
little-endian format 2-4

Minimum interrupt latencies 2-24
MLA

instruction 6-12
opcode support C-3

MLAL instruction 6-13
Mode bits 2-15
Modes

abort 2-7, D-22, D-23, D-24
FIQ 2-7
FIQ, defined 2-19
IRQ 2-7
IRQ, defined 2-19
operating 2-7
privileged 2-7, 2-15, 2-19
PSR bit values 2-15
supervisor 2-7, 2-21
system 2-7, D-18
undefined 2-7
user 2-7

MOV instruction 2-13
MRC instruction 4-9, 5-16
MUL

instruction 6-12, C-4
instruction cycle operations 6-12
opcode support C-3

MUL32 C-3–C-5
instruction cycle times C-4
performance C-5

MULL instruction 6-13
Multi-ICE 5-2
Multiplier C-3

reduced-function variant C-3
removing C-3

Multiply accumulate.  See MLA
Multiply long.  See  MULL
Multiply.  See MUL
Multiply-accumulate long.  See  MLAL

N
nCPI 4-8
nFIQ 5-9, A-5
nIRQ 5-9, A-5
nRESET 2-25, 4-4, 4-5, 5-9, A-5

O
Operating modes 2-7
Operating state

ARM 2-3
CPTBIT 2-15
switching 2-3
T bit 2-15
Thumb 2-3

P
PC 2-3, 2-8, 2-11, 2-12, 2-18, 2-20, 2-24
Pipeline 1-2

follower 4-5
Porting considerations

ARM7TDMI-S B-9
Prefetch

abort D-24
Prefetch abort 2-19, 2-20, D-24
Privileged instructions 4-16
Privileged modes 2-7, 2-15, 2-19
Processor state, determining D-15
Program counter.  See PC
Program status registers.  See PSR
Programming EmbeddedICE 5-8
PROT 3-11, 6-3, A-5, D-30, D-32, 

D-33, D-34
Protocol converter 5-4
PSR 2-14, 6-10

control bits 2-15, 2-16
format 2-14
mode bit values 2-15
reserved bits 2-16

Public instructions D-7

R
RANGE D-30, D-32, D-33, D-34, 

D-38, D-39
Range checking D-30
RDATA 3-13, 4-4, 4-5, A-5, B-8
Register set

ARM state 2-11
Thumb state 2-11

Register transfer, coprocessor 6-27, 
6-28

Registers
address mask D-27, D-29
address value D-27
ARM state 2-8
banked 2-8
bypass D-10
debug comms control 5-15
FIQ mode D-16
general-purpose 2-8
high registers 2-13
ID D-10
instruction D-8
link 2-9
status 2-8
Thumb 2-11
user mode D-16
watchpoint D-27, D-28

Registers, debug
bypass D-9, D-10
comms control 5-15
comms data read 5-15
comms data write 5-15
control 5-12, D-35
control mask D-27, D-29
control value D-27, D-29
data mask D-27, D-29
data value D-27
EmbeddedICE D-13
EmbeddedICE control D-20, D-29
EmbeddedICE debug status 5-11, 

D-15
EmbeddedICE status D-17
EmbeddedICE, accessing D-4
ID D-5, D-10
instruction D-6, D-8, D-9, D-10
scan path select D-7, D-10, D-11
status 5-12, D-36
test data D-10

Reserved bits, PSR 2-16
Reset 2-25

TAP controller D-5
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RESTART instruction D-9, D-17, D-18
Restart on exit from debug D-9
Return address, calculation D-23
RTCK 5-2
RUN-TEST/IDLE state D-9, D-18

S
Saved program status register.  See SPSR
Scan

general timing 7-6
input cells D-8
interface timing D-25
limitations D-3
output cells D-8
path D-3, D-7
test D-10

Scan cells D-8, D-9, D-12
Scan chains D-3–D-4, D-7, D-8, D-11, 

D-25–D-31
number allocation D-12
scan chain 1 D-3, D-10, D-12, 

D-13, D-15, D-17, D-21, 
D-25

scan chain 2 D-3, D-4, D-10, D-12, 
D-13, D-28

Scan path select register D-7, D-10, 
D-11

SCAN_N D-7
instruction D-7, D-11

SCAN_N TAP
instruction D-13

SCANENABLE A-5, B-7
SCANIN A-5, B-7
SCANOUT A-6, B-7
Serial interface, JTAG 5-2, 5-5
SHIFT-DR

cycle D-13
state D-5, D-7, D-8, D-9, D-10, 

D-11
SHIFT-IR state D-11
Signal types 3-3, 4-4

address class 3-10
clocking and clock control 3-17
data timed 3-13

Signals A-2–A-6
ABORT 3-13, A-2, B-8
ADDR 3-10, A-2
address class, timing B-9
bus interface 3-3
CFGBIGEND 5-9, A-2
CHAIN D-30–D-39
CHAINOUT D-30, D-38–D-39
CLK 4-4, 4-5, 5-6, 5-10, A-2, B-8, 

D-5, D-7, D-10, D-14, 
D-41

CLKEN 3-17, 4-4, 4-5, 5-10, A-2, 
B-8, D-14, D-17, D-18

clock and clock control 4-4
coprocessor interface 4-4
CPA 4-2, 4-6, 6-22, 6-23, 6-25, 

6-29, A-2
CPB 4-2, 4-6, 6-22, 6-23, 6-25, 

6-29, A-2
CPnCPI 4-2
CPnI A-2
CPnMREQ 4-4, A-3
CPnOPC 4-4, A-3
CPnTRANS 4-4, 4-16, A-3
CPSEQ 4-4, 4-14, A-3
CPTBIT 2-15, 3-12, 4-4, 4-5, 4-14, 

6-3, A-3
DBGACK 5-6, 5-14, A-3, D-17, 

D-18, D-19, D-20, D-35, 
D-36, D-40

DBGBREAK 5-6, 5-14, 7-5, A-3, 
D-3, D-13, D-17, D-21, 
D-40

DBGCOMMRX A-3
DBGCOMMTX A-4
DBGEN 5-14, A-4, D-40
DBGEXT A-4, D-30, D-32, D-33, 

D-34, D-41
DBGnEXEC A-4
DBGnTDOEN A-4
DBGnTRST A-4, D-5
DBGRNG A-4, D-30, D-39
DBGRQ 5-6, 5-8, 5-9, 5-14, A-4, 

D-35, D-36, D-40
DBGTCKEN 5-10, A-4, B-8, D-5, 

D-7, D-10, D-14, D-17
DBGTDI A-4, B-8, D-7, D-8
DBGTDO A-4, D-5, D-7, D-8
DBGTMS A-4, B-8, D-7
debug interface 5-2, 5-6
ENABLE D-31
FIQ 4-8
interface B-2
IRQ 4-8
LOCK 3-12, 6-20, A-5
nCPI 4-8
nFIQ 5-9, A-5
nIRQ 5-9, A-5
nRESET 2-25, 4-4, 4-5, 5-9, A-5
PROT 3-11, 6-3, A-5, D-30, D-32, 

D-33, D-34
PROT, meanings 4-16
RANGE D-30, D-32, D-33, D-34, 

D-38, D-39
RDATA 3-13, 4-4, 4-5, A-5, B-8
RTCK 5-2
SCANENABLE A-5, B-7
SCANIN A-5, B-7
SCANOUT A-6, B-7
SIZE 3-11, 6-3, A-6, D-34
TCK 5-2, D-9
TRANS 5-9, 6-3, A-6, D-17, D-36
WDATA 3-13, 4-4, A-6, B-8
WRITE 3-10, 6-3, 6-23, 6-25, A-6, 

D-34

Single-step core operation D-8
SIZE 3-11, 6-3, A-6, D-34
Software breakpoints D-32, D-33

clearing D-33
setting D-33

Software interrupts. See SWI
SP 2-9, 2-11, 2-12
SPSR 2-8, 2-11, 2-12, 2-14, 2-18, D-22

format 2-14
Stack pointer. See SP
State

ARM 1-4
debug 5-2
Thumb 1-4

States
CAPTURE-DR D-7, D-8, D-9, 

D-10, D-11
CAPTURE-IR D-6, D-11
core D-15
processor operating 2-3
RUN-TEST/IDLE D-9, D-18
SHIFT-DR D-7, D-8, D-9, D-10, 

D-11
SHIFT-IR D-11
system D-15, D-17
TAP D-12
TAP controller 5-2
UPDATE-DR D-7, D-8, D-9, 

D-11, D-12
UPDATE-IR D-11

Status registers 2-8
STC 4-11
STM 5-8

at debug speed D-17
instruction 2-20, 6-19
instruction cycle operations 6-19

Store coprocessor register 6-25
Store multiple registers.  See STM
Store register.  See STR

STR
instruction 2-20, 6-16, 6-20
instruction cycle operations 6-16

STRT instruction 6-16
Summary

instruction set 1-9–1-19
Supervisor mode 2-7, 2-21
SWI 2-21

instruction 6-21
instruction cycle operations 6-21

SWP instruction 2-20
System

state D-17
System speed

access D-35
instruction D-17, D-23
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System state, determining 5-11, D-17

T
T bit 2-15, 2-18, 2-25
TAP

instruction D-11
state D-12

TAP controller 5-5, 5-12, D-3, D-4, 
D-5, D-9, D-12, D-13, D-17, 
D-18

reset D-5
states 5-2

TAP state machine D-4
TBIT D-36
TCK 5-2, D-9
Test

clock 5-2
data D-8
INTEST D-13

Test Access Port  See  TAP
Test data D-9

registers D-10
Test mode D-8
Thumb

BL instruction 6-8
code 1-5
instruction set 1-4
long branch with link

instruction 6-8
operating state 2-3
registers 2-11
state 1-4

Timing
configuration input 7-4
coprocessor 7-4
debug 7-5
EmbeddedICE D-41
exception input 7-4
interrupts B-9
parameters B-8
scan 7-6
scan interface D-25

TRANS 5-9, 6-3, A-6, D-17, D-36

U
Undefined instructions 6-29

handling 4-15
instruction cycle operations 6-29
trap 2-21, 6-29

Undefined mode 2-7
Unexecuted instructions 6-30
Unused instruction codes D-9
UPDATE-DR

cycle D-13
state D-7, D-8, D-9, D-11, D-12

UPDATE-IR state D-11
User mode 2-7

W
Watchpointed

access D-22, D-24
memory access D-22

Watchpoints 5-6, 5-8, 5-12, 5-13, D-13, 
D-21

aborted D-23
data-dependent D-34
entering debug state from D-21
externally-generated 5-6
generating D-34
programming D-34
register D-28
registers D-27
units D-27
with exception D-21, D-23

WDATA 3-13, 4-4, A-6, B-8
port 7-3

WRITE 6-3, 6-23, 6-25, A-6, D-34
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